Supporting Information

A Glucose Biosensor based on Immobilization of Glucose Oxidase on Three-Dimensional Macroporous Carbon Electrodes

Jingyi Chen, Rong Zhu, Jia Huang, Man Zhang, Hongyu Liu, Min Sun, Li Wang and Yonghai Song*

Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.

^{*}Corresponding author: Tel/Fax: +86 791 88120861. E-mail: yhsonggroup@hotmail.com (Y. Song).

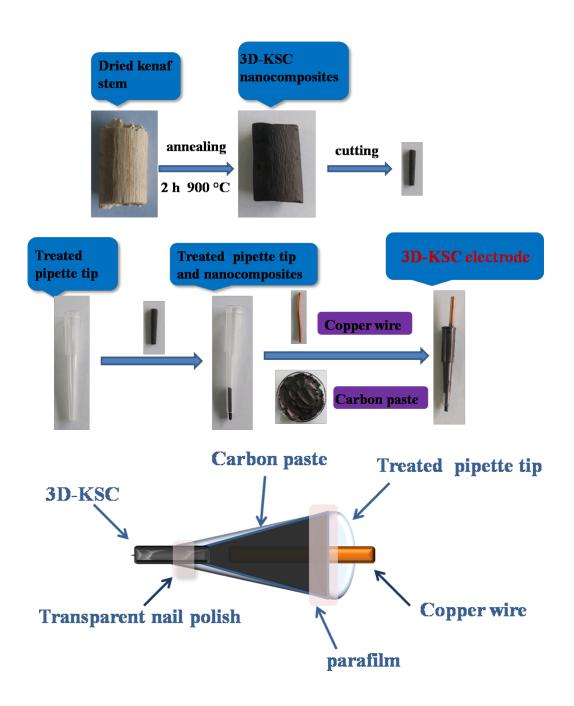


Fig. S1. Schematic illustration of the fabrication and structure of the 3D-KSC/GOD electrode.

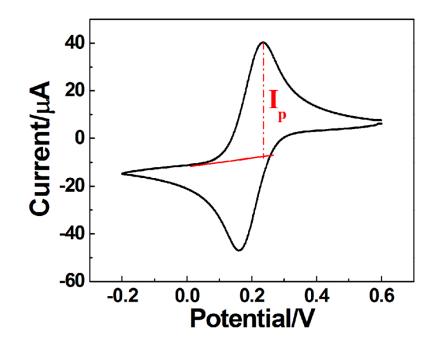


Fig. S2. CVs of 3D-KSC electrode in 0.1 M KCl solution containing 5.0 mM $\text{Fe}(\text{CN})_6^{3-/4-}$ at 50 mV s⁻¹.

The effective surface areas (A_{eff}) of various 3D-KSC were estimated before use based on the CVs in 0.1 M KCl solution containing 5.0 mM Fe(CN)₆^{3-/4-} at 0.05 V s⁻¹ according to Randles-Sevcik equation:

$$I_p = 2.69 \times 10^5 A n^{3/2} D_0^{1/2} v^{1/2} C_0 \tag{1}$$

where *n* is the number of electrons participating in the redox (*n*=1 for Fe(CN)₆^{3-/4-}), D_0 is the diffusion coefficient of the molecule in a solution (0.673×10⁻⁵ cm² s⁻¹ for Fe(CN)₆^{3-/4-} in 0.1 M KCl solution, C_0 is the bulk concentration of the redox probe ($C_0 = 5$ mM of the Fe(CN)₆^{3-/4-}). As shown in Fig. S2, the I_p was calculated to be 47.41 and accordingly the value of A_{eff} for the 3D-KSC electrode was estimated to be 0.0607 cm².

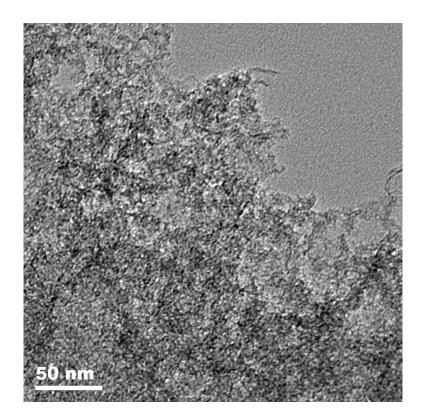


Fig. S3 TEM images of 3D-KSC.

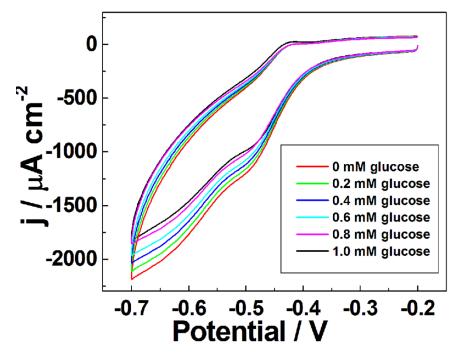


Fig. S4. CVs of the 3D-KSC/GOD electrode in 0.2 M O₂-saturated PBS (pH 7.0) at scan rate of

 $0.05 \text{ V} \text{ s}^{-1}$ in the presence of glucose with small concentrations.

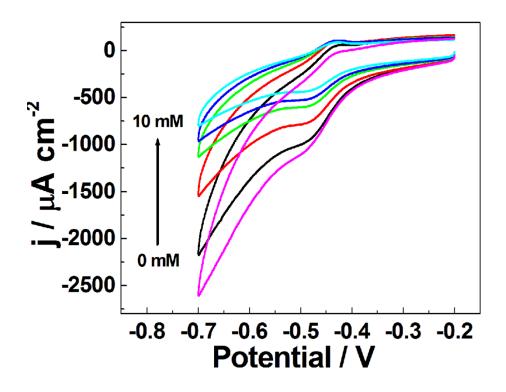
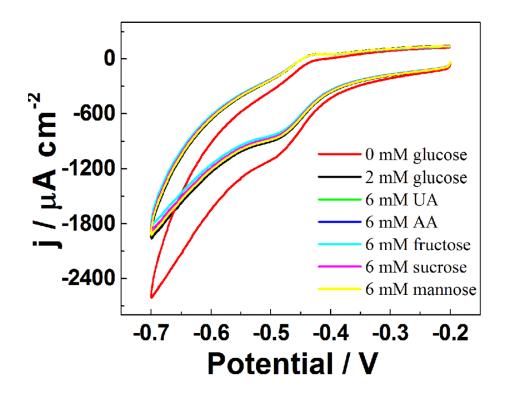
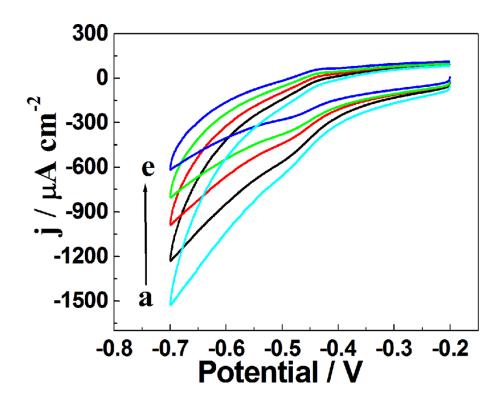




Fig. S5. (A) CVs of the 3D-KSC/GOD electrode, which made by different batches of pyrolyzed kenaf stems, in 0.2 M O_2 -saturated PBS (pH 7.0) at scan rate of 0.05 V s⁻¹ in the presence of glucose with various concentrations

Fig. S6. CVs response of 3D-KSC/GOD in 0.2 M O₂-saturated PBS in the presence of glucose and other interfering substances.

Fig. S7 Determination of (a) glucose concentration in blood serum sample in the presence of (a) 0 mM; (b) 2.0 mM; (c) 4.0 mM; (d) 6.0 mM; (e) 8.0 mM glucose standard solution using the 3D-KSC/GOD electrode.

NO.	Added (mM)	Found (mM)	RSD (%)	Recovery (%)
1	2.0	2.18	4.47	109.0
2	4.0	4.01	1.12	100.2
3	6.0	5.86	3.01	97.7
4	8.0	7.88	2.66	98.5

Table S1 Determination of glucose concentration in blood serum samples using the 3D-KSC/GOD electrode.