## **Supporting Information**

# Ultrasensitive Colorimetric Assay of Cadmium Ion Based on Silver Nanoparticles Funtionalized with 5-Sulfosalicylic Acid for Wide Practical Applications

Weiwei Jin, Pengcheng Huang, Fangying Wu,\* Li-Hua Ma\*

Department of Chemistry, Nanchang University, Nanchang 330031, China

\* Corresponding author: Fangying Wu, Tel: + 86 79183969882; Fax: + 86 79183969514; E-mail address: fywu@ncu.edu.cn; Li-Hua Ma, Tel: 7134802039. Email: lihua2003@gmail.com.

#### **Pretreatment for real samples**

The milk samples pretreatment procedure was carried out following the general procedure.<sup>1</sup> Briefly, 2 g milk product was added into 1.5 mL of 10% trichloroacetic acid and 5.0 mL of acetonitrile mixture to remove proteins. The mixture solution was transferred to centrifugal tube to undergo sonication for 10 min and then centrifuged at 12, 000 rpm for 15 min. The supernatant was filtered through a 0.22  $\mu$ M membrane filter to remove lipids. The pH of filtrate was adjusted to 6.8, and the filtrate was filtered through 0.22  $\mu$ M membrane filter again after centrifugation. The filtered liquid was diluted with water to 10 mL for further analysis.

 $500 \ \mu$ L of human serum was placed in a centrifuge tube and 2.0 mL of acetonitrile was added to precipitate proteins. After vortex-mixing, the sample was centrifuged at 4, 000 rpm for 15 min, and the supernatant was transferred into a 25 mL volumetric flask and diluted to the mark with deionized water. An appropriate aliquot of this solution was taken for analysis according to the general procedure.

Urine samples were diluted by 100-fold and an appropriate aliquot of this solution was taken for analysis according to the general procedure. No further pretreatment was necessary.

Water samples were deposited overnight.



Fig. S1 Particle size distribution histogram of SAA-AgNPs.



**Fig. S2** Absorption spectra of SAA-AgNPs (black line), SAA-AgNPs-Cd<sup>2+</sup> (blue line) and SAA-AgNPs-Cd<sup>2+</sup> (red line) in the presence of chelating agent EDTA.



Fig. S3 Absorbance changes of the AgNPs upon the addition of  $Cd^{2+}$  at 25 °C for 5 h (A) and

stored at 4 °C in the dark for 18 days (B), respectively.



Fig. S4 Absorption spectra of (A) SAA-AgNPs in the presence and absence of metal ions (0.7  $\mu$ M) and (B) SAA (0.1 mM) in the presence and absence of metal ions (70  $\mu$ M).



Fig. S5 Relationship between the ratio  $A_{540nm}/A_{390nm}$  and the concentration of  $Cd^{2+}$  detection in distilled water, serum, urine, milk and water samples.

# Table S1 Cd<sup>2+</sup> Detection Methods Published.

| Method                                        | Linearity | LOD           | Response to                           | Recovery   | Ref. |
|-----------------------------------------------|-----------|---------------|---------------------------------------|------------|------|
|                                               | range     |               | ions                                  | matrices   |      |
| N-(2-hydroxybenzyl)-isoleucine                | NA        | 8.9           | Cd <sup>2+</sup> , Hg <sup>2+</sup> , | water      | 26   |
| functionalized AgNPs                          |           | μM            | Pb <sup>2+</sup>                      |            |      |
| 4-amino-3-hydrazino-5-mercapto -              | 0.06-0.48 | 0.03          | Cd <sup>2+</sup> , Pb <sup>2+</sup> , | water      | 23   |
| 1,2,4-triazole modified AuNPs                 | μM        | μM            | Ni <sup>2+</sup> , Co <sup>2+</sup> , |            |      |
|                                               |           |               | Zn <sup>2+</sup> , Hg <sup>2+</sup>   |            |      |
| AuNPs based lateral flow                      | 3.6-89 nM | 0.90          | Cd <sup>2+</sup>                      | water      | 24   |
| Immunodevice                                  |           | nM            |                                       |            |      |
| Label-Free AuNPs                              | None      | 5.0           | $Cd^{2+}$                             | rice       | 25   |
|                                               |           | μM            |                                       |            |      |
| Peptide-modified AuNPs                        | 0.50-2.0  | 50 <i>n</i> M | Cd <sup>2+</sup> , Ni <sup>2+</sup> , | water      | 27   |
|                                               | μM        |               | Co <sup>2+</sup>                      |            |      |
| Polymer mediated aggregation of               | 0-0.4 μM  | 4.6           | Cd <sup>2+</sup> , Hg <sup>2+</sup> , | none       | S1   |
| AuNPs                                         |           | nM            | Pb <sup>2+</sup> , Cu <sup>2+</sup> , |            |      |
|                                               |           |               | $Zn^{2+}$                             |            |      |
| Quantum dots CdTe conjugated                  | 0.1-15 μM | 12 <i>n</i> M | Cd <sup>2+</sup>                      | water      | S2   |
| fluorescein                                   |           |               |                                       | HSA        |      |
| Turn-on fluorescent InP nanoprobe             | 0.2-10 μM | 0.10          | Cd <sup>2+</sup>                      | water      | S3   |
|                                               |           | μM            |                                       |            |      |
| ZnS:Mn nanoparticles functionalized           | 23.4-1100 | 23.44         | Cd <sup>2+</sup>                      | water      | S4   |
| by PAMAM-OH dendrimer based                   | μM        | μM            |                                       |            |      |
| fluorescence ratiometric probe                |           |               |                                       |            |      |
| Colorimetric and fluorogenic                  | 0-4 μM    | 0.70          | Cd <sup>2+</sup> , Zn <sup>2+</sup> , | none       | S5   |
| detection of Cd <sup>2+</sup>                 |           | μM            | Cu <sup>2+</sup>                      |            |      |
| Two-Photon fluorescent Probe                  | NA        | 23.63         | Cd <sup>2+</sup> , Zn <sup>2+</sup>   | live cells | 34   |
|                                               |           | nM            |                                       | image      |      |
| Ratiometric indicator based surface-          | 0.01-0.21 | 2.9           | Cd <sup>2+</sup>                      | water      | S6   |
| enhanced raman spectroscopy                   | μM        | nM            |                                       |            |      |
| Ratiometric electrochemical sensor            | 0.1-10 μM | 10 nM         | Cd <sup>2+</sup>                      | water      | S7   |
| Voltammetric detection of cadmium             | NA        | 5.0           | Cd <sup>2+</sup> , Pb <sup>2+</sup> , | none       | S8   |
| ions                                          |           | nM            | Cu <sup>2+</sup>                      |            |      |
| Electrochemical sensor for the                | 2.22-44.5 | 0.03          | Cd <sup>2+</sup>                      | water      | S9   |
| sensitive detection of                        | nM        | nM            |                                       |            |      |
| Cd <sup>2+</sup> nanographeneand Nafion       |           |               |                                       |            |      |
| Photoelectrochemical detection of             | 10-9-10-2 | 0.35          | $Cd^{2+}$                             | water      | S10  |
| Cd <sup>2+</sup> based on electrodeposited on | М         | nM            |                                       |            |      |
| TiO <sub>2</sub> nanotubes                    |           |               |                                       |            |      |
| SnO <sub>2</sub> /reduced graphene oxide      | 0-1.3 μM  | 0.101         | Cd <sup>2+</sup> , Cu <sup>2+</sup> , | none       | S11  |
| nanocomposite for the simultaneous            |           | nM            | $Hg^{2+}, Pb^{2+}$                    |            |      |
| electrochemical detection                     |           |               |                                       |            |      |

| Maize tassel-MWCNTs composite for                    | 0.018-0.27 | 4.5   | $Cd^{2+}$                             | water      | S12  |
|------------------------------------------------------|------------|-------|---------------------------------------|------------|------|
| Cd <sup>2+</sup> detection using <b>cyclic</b>       | μM         | nM    |                                       |            |      |
| voltammetry                                          |            |       |                                       |            |      |
| Determination of lead, cadmium and                   | 0-0.36 μM  | 27 nM | Cd <sup>2+</sup> , Pb <sup>2+</sup> , | plant      | S13  |
| copper by flame atomic absorption                    |            |       | Cu <sup>2+</sup>                      | leaves     |      |
| spectrometry                                         |            |       |                                       |            |      |
| Determination of Cd <sup>2+</sup> in urine by        | 0.0018-1.8 | 1.8   | Cd <sup>2+</sup>                      | urine      | S14  |
| tungsten-coil ICP-AES                                | μM         | nM    |                                       |            |      |
| Direct fluorescence detection of                     | 5-200 nM   | 3.3   | Cd <sup>2+</sup> , Pb <sup>2+</sup>   | water      | S15  |
| Pb <sup>2+</sup> and Cd <sup>2+</sup> by <b>HPLC</b> |            | nM    |                                       |            |      |
| New magnetic polymeric                               | 7.1-534    | 0.80  | $Cd^{2+}$                             | diesel oil | S16  |
| nanoparticles                                        | nM         | nM    |                                       |            |      |
| Magnetic nanoparticles as asorbent                   | 0.089-4.4  | 0.033 | Cd <sup>2+</sup>                      | food       | S17  |
| for the preconcentration and                         | nM         | nM    |                                       | water      |      |
| determination of Cd <sup>2+</sup>                    |            |       |                                       |            |      |
| SAA modified AgNPs                                   | 0.05-1.0   | 3.0   | $Cd^{2+}$                             | water      | This |
|                                                      | μM         | nM    |                                       | serum      | work |
|                                                      |            |       |                                       | milk       |      |

### References

- S1 Y. G. Wu, S. S. Zhan, L. M. Wang and Z. Pei, Analyst, 2014, 139, 1550.
- S2 R. J. Gui, X. Q. An and W. X. Huang, Anal. Chim. Acta, 2013, 767, 134.
- S3 Y. Zhang, Z. L. Zhang, D. H. Yin, J. Li, R. G. Xie and W. S. Yang, ACS Appl. Mater. Interfaces, 2013, 5, 9709.
- S4 B. B. Campos, M. Algarra, K. Radotic, D. Mutavdzic, E. R. Castllon, J. J. Jimenea, B. Alonso, C. M. Casado and J. C. G. Esteves da Silva, *Talanta*, 2015, **134**, 317.
- S5 S. Goswami, K. Aich, S. Das, A. K. Das, A. Manna and S. Halder, Analyst, 2013, 138, 1903.
- S6 Y. Chen, Z. P. Chen, S. Y. Long and R. Q. Yu, Anal. Chem., 2014, 86, 12236.
- S7 X. L. Chai, L. Zhang and Y. Tian, Anal. Chem., 2014, 86, 10668.
- S8 E. Chow, D. B. Hibbert and J. J. Gooding, Analyst, 2005, 130, 831.
- S9 L. D. Wu, X. C. Fu, H. Liu, J. C. Li and Y. Song, Anal. Chim. Acta., 2014, 851, 43.
- S10 Y. Liang, B. Kong, A. W. Zhu, Z. Wang and Y. Tian, Chem. Commun., 2012, 48, 245.
- S11 Y. Wei, C. Gao, F. L. Meng, H. H. Li, L. Wang, J. H. Liu and X. J. Huang, J. Phy. Chem. C., 2012, 116, 1034.
- S12 M. Moyo and J. O. Okonkwo, Sensor Actuat. B.-Chem., 2014, 193, 515.
- S13 G. Kaya and M. Yaman, Talanta, 2008, 75, 1127.

- S14 A. C. Davis, C. P. Calloway Jr and B. T. Jones, *Talanta*, 2007, 71, 1144.
- S15 S. Saito, N. Danzaka and S. Hoshi, J. Chromatogr. A., 2006, 1104, 140.
- S16 H. Ebrahimzadeh, M. Kasaeian, A. Khalilzadeh and E. Moazzen, Anal. Method, 2014, 6, 4617.
- S17 A. Mirabi, Z. Dalirandeh and A. S. Rad, J. Magn. Mater., 2015, 381, 138.