Supporting Information for

Squaramide-based Tripodal Ionophores for Potentiometric Sulfate-selective Sensors with High

Selectivity

Yueling Liu¹, Yu Qin^{1*}, Dechen Jiang^{1,2*}

¹.State Key Laboratory of Analytical Chemistry for Life science, School of Chemistry and

Chemical Engineering, Nanjing University, Nanjing, China, 210093.

².State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese

Academy of Sciences.

Fax: +86-25-83592562 (Y.Q) and +86-25-83594846 (D.J);

Tel: +86-25-83592562 (Y.Q) and +86-25-83594846 (D.J);

E-mail: qinyu75@nju.edu.cn(Y.Q) and dechenjiang@nju.edu.cn (D.J)

1. Characterization of ionic sites

Figure S1: Sulfate responses of Ionophore III-based membranes in the presence and absence of ionic sites (●, TDMACl; ▲, no ionic sites; ■, NaTFPB)

2. Experiential data for the detection of sulfate in cellular lysate and drinking water.

Electrodes (<i>n</i> =3)		
Samples	Average found	Mean EMF value / mV
Cell lysates	$337.9\pm0.5\ \mu\text{M}$	216.02 ± 0.1
Drinking water	$3.51 \pm 0.2 \text{ mM}$	192.49 ± 0.6
	66.6±0.4 mg	129.75 ± 0.7
	266.3±0.9 mg	114.75 ± 0.4

Table S1. Determination of Sulfate in Drinking Water and Cell Extracts by Ionophore III-based E_{1}