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S1. Lorentz Model

The Lorentz model is a classical model for the computation of the dielectric constant of a material 

in the presence of absorption resonances. Although based on classical electrodynamics, including 

quantum effects only phenomenologically via the (measured) spectrum of discrete molecular 

frequencies, it is surprisingly effective in explaining the frequency dependence of the complex 

index of refraction m. In particular, it correctly predicts the Lorentz-type shape of the imaginary 

part of m, which closely resembles the line shape of an absorption resonance. For the derivation 

of the Lorentz model, we follow the excellent presentations by Griffiths 1 and Parson 2.  The 

Lorentz model in its simplest form assumes that an electron is bound to an atom or molecule with 

a harmonic binding force 

(S1)𝐹𝑏 =‒ 𝑀𝜔2
0𝑥
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where M is the mass of the electron,  is the natural oscillation frequency of the electron in the 𝜔0

harmonic binding potential and x is the amplitude of vibration of the electron in the direction of 

the external electric field  which, in our case, is the infrared light field. It is not necessary to �⃗�

restrict ourselves to electrons. Any charged particle or active group of charged particles that may 

execute a vibration, such as, e.g., O-H or C=O stretches, are successfully described by the Lorentz 

model. Therefore, from now on, we imagine a "particle" with effective mass M and charge q 

subject to the binding force in Eq. S1, and substitute "electron", or "chemically active group" for 

"particle", as the case may be. For electrons, for instance, , where is 𝑞 =‒ 𝑒 𝑒 = 1.602 × 10 ‒ 19 𝐶 

the elementary charge. For chemically active groups, q is substituted with the polarization charge 

 of the polar ends of the group. When the particle vibrates, it loses energy, for instance by 𝛿𝑞

electromagnetic dipole radiation or by energy transfer to the backbone molecule or the medium, 

via the long-range Coulomb force. We model this energy loss with a damping force 

(S2)
𝐹𝛾 =‒ 𝑀𝛾

𝑑𝑥
𝑑𝑡

which depends linearly on the speed  of the vibrating particle, and is the damping constant, 

𝑑𝑥
𝑑𝑡 𝛾 

which depends on the details of the energy dissipation processes. In addition to the binding force 

 and the damping force , the particle also experiences the driving force 𝐹𝑏 𝐹𝛾

(S3)
𝐹𝑑 = 𝑞𝐸(𝑡) +

𝑞𝑃(𝑡)
3𝜀0

where 

(S4)𝐸(𝑡) = 𝐸0cos 𝜔𝑡

is the field strength of the infrared light as a function of time ,  is its frequency and 𝜔

(S5)𝑃(𝑡) = 𝑁𝑞𝑥(𝑡)



is the polarization induced by the external field and N is the number of particles per unit volume. 

We assume here a linear dielectric, in which the polarization of the medium is directly proportional 

to the radiation field. Newton's equation of motion for the particle, 

(S6)
𝑀

𝑑2𝑥

𝑑𝑡2
= 𝐹𝑏 + 𝐹𝛾 + 𝐹𝑑

leads to the differential equation 

(S7)
𝑀

𝑑2𝑥

𝑑𝑡2
+ 𝑀𝛾

𝑑𝑥
𝑑𝑡

+ 𝑀𝜔2
0𝑥 = 𝑞𝐸0cos 𝜔𝑡 +

𝑞𝑃(𝑡)
3𝜀0

for the position of the particle. The solution of Eq. S7 is greatly simplified if we consider Eq. S7 

as the real part of the complex equation 

(S8)

𝑑2�̃�

𝑑𝑡2
+ 𝛾

𝑑�̃�
𝑑𝑡

+ 𝜔2
0�̃� =

𝑞
𝑀

�̃� +
𝑞

3𝜀0𝑀
�̃�

where x is the real part of the complex quantity ,�̃�

(S9)�̃� = 𝐸0𝑒 ‒ 𝑖𝜔𝑡

is the complex electric field and

(S10)�̃� = 𝑁𝑞�̃�

is the complex polarization. In infrared spectroscopy we are not interested in the transient solutions 

of Eq. S8, i.e. solutions which are generated by switch-on and switch-off of the infrared light. 

These solutions quickly decay exponentially in time. Once the transient solutions have decayed, 

the system settles into the steady-state solution 

(S11)�̃� = �̃�0𝑒 ‒ 𝑖𝜔𝑡

Inserting this into Eq. S8 and using Eq. S10, we obtain 



(S12)

�̃�0 =
𝑞/𝑀

𝜔2
0 ‒ 𝜔2 ‒

𝑞2𝑁
3𝜀0𝑀

‒ 𝑖𝛾𝜔

𝐸0

The complex dipole moment of the particle is 

(S13)

�̃� = 𝑞�̃� =
𝑞/𝑀

𝜔2
0 ‒ 𝜔2 ‒

𝑞2𝑁
3𝜀0𝑀

‒ 𝑖𝛾𝜔

�̃�

We now assume that we have Nm active molecules in our sample and each molecule consists of fs 

particles with masses Ms, charges qs, resonance frequencies   and damping constants . We 𝜔𝑠 𝛾𝑠

define

(S14)
Ω2

𝑠 = (𝜔𝑠)2 ‒ ( 𝑞2
𝑠𝑁𝑚

3𝜀0𝑀𝑠)𝑓𝑠

The polarization , i.e. the dipole moment per unit volume, is given by �̃�

(S15)�̃� = 𝜀0�̃��̃�

where  is the permittivity of the vacuum, 𝜀0

(S16)
�̃� = 𝑁𝑚∑

𝑠

𝑞2
𝑠𝑓𝑠/𝑀𝑠

Ω2
𝑠 ‒ 𝜔2 ‒ 𝑖𝛾𝑠𝜔

is the susceptibility and  is the complex electric field defined in Eq. S9. The dielectric constant �̃�

is

(S17)�̃� = 𝜀0�̃�𝑟

where the relative dielectric constant  depends on  according to �̃�𝑟 �̃�

(S18)�̃�𝑟 = 1 + �̃�



In Eq. S16 we have to sum over all resonances over the entire electromagnetic spectrum including 

the radio frequency region below the infrared frequency range, the infrared frequency region, and 

the spectral region above the infrared. We are interested in the infrared frequency region. 

Therefore, for frequencies larger than infrared frequencies, e.g. in the visible and UV, we may 

neglect  with respect to  and , and expand Eq. S16 to first order in . As a 𝛾𝑠𝜔 𝜔2 Ω2
𝑠

( 𝜔
Ω𝑠

)2

consequence, the summation in this frequency range contributes approximately a real term 

(S19)
𝛼(𝜔) = 𝑁𝑚∑

𝑘

𝑞2
𝑘𝑓𝑘/𝑀𝑘

Ω2
𝑘

[1 + ( 𝜔
Ω𝑘

)2]
to the susceptibility in Eq. S16, where the sum over k in Eq. S19 extends over all resonances with 

frequencies above the infrared range. In the case of the resonances below the infrared frequency 

range, i.e. the far infrared region and radio frequency region, we may neglect  and   with Ω2
𝑠 𝛾𝑠𝜔

respect to . Thus, this frequency range, approximately, contributes the frequency dependent 𝜔2

term

(S20)
𝛽(𝜔) =‒

𝑁𝑚

𝜔2∑
𝑙

𝑞2
𝑙𝑓𝑙

𝑀𝑙

to the susceptibility in Eq. S16, where the sum over l in Eq. S20 is over all the resonances below 

the infrared frequency range. Thus, all together, we now obtain 

(S21)
�̃�𝑟 = �̅�𝑟 + 𝑁𝑚 ∑

𝑠 𝜖 𝐼𝑅

𝑞2
𝑠𝑓𝑠/𝑀𝑠

Ω2
𝑠 ‒ 𝜔2 ‒ 𝑖𝛾𝑠𝜔

where the sum in Eq. S21 extends only over the infrared (IR) resonances and

(S22)�̅�𝑟 = 1 + 𝛼(𝜔) + 𝛽(𝜔)



is the frequency dependent effective relative dielectric constant of the medium, i.e. the background 

dielectric constant, on which the infrared resonances are built. The complex index of refraction is 

now given by  

(S23)𝑚 = �̃�𝑟

At this point two important comments are in order: (1) In optics we are familiar with the 

phenomenon of dispersion, i.e. the change of the index of refraction with increasing wavelength. 

For glass, for instance, we know that the index of refraction decreases with increasing wavelength, 

which gives rise to the familiar observation of the splitting of white light into its constituent colours 

with the help of a prism. This decrease in the index of refraction is now easily explained. According 

to Eqs. S19 and S20, both  and  cause a decrease in , and therefore, according to 𝛼(𝜔) 𝛽(𝜔) �̅�𝑟

Eq. S23, they also cause a decrease in m, when the wavelength increases. Therefore the Lorentz 

model explains this basic observation. (2) Since the quantities Nm,  , , and   are usually not 𝑞𝑠 𝑓𝑠 𝛾𝑠

readily available, we write

(S24)
�̃�𝑟 = �̅�𝑟 + ∑

𝑠 𝜖 𝐼𝑅

Λ𝑠

�̃�2
𝑠 ‒ �̃�2 ‒ 𝑖Γ𝑠�̃�

where , , , and  are adjustable parameters and �̅�𝑟  �̃�𝑠 Λ𝑠 Γ𝑠

(S25)
�̃� =

1
𝜆

=
𝜔

2𝜋𝑐

where  is the wavelength and c is the vacuum speed of light. This is the microscopic basis for the 𝜆

usual practice in spectroscopy of fitting Lorentzian lines to resonance structures in the index of 

refraction. 

Instead of using quantum mechanics to solve for the quantized excitations of the molecule in the 

presence of the infrared radiation field, the Lorentz model uses classical mechanics to solve the 



forced, damped harmonic oscillator equation (S8). This, apparently, introduces two errors, (i) the 

oscillator (S8) is not quantized and (ii) neither is the radiation field, i.e. it is not treated as consisting 

of photons. The question is: how serious are these approximations? The answer is the following. 

(i) Quantum mechanics has been partially included by providing the Lorentz model with the 

discrete set of molecular frequencies , a direct result of the quantization of the molecule via the Ω𝑠

many-body Schrödinger equation. (ii) Although the radiation field consists of photons, the light 

intensities in infrared spectroscopy are so high that we can safely neglect the quantization of the 

radiation field. Of course there remains the question of the quantization of the  modes, whose Ω𝑠

amplitudes are treated as a classical, continuous variable, although, according to quantum 

mechanics, they should be quantized. This, however, is not serious. As soon as the  oscillators Ω𝑠

are appreciably excited, corresponding to a few absorbed photons, the classical approximation is 

practically indistinguishable from the exact quantum treatment, which is due to the Bosonic nature 

of the oscillator excitations. Thus, because of the relatively large intensities of the infrared light 

field, the classical approximation of both the molecular oscillators and the radiation field is 

justified.

S.2. Mie Formulas

The Mie scattering amplitudes are defined as:

(S26)
𝑆1(𝜃) =

∞

∑
𝑛 = 1

2𝑛 + 1
𝑛(𝑛 + 1)

{𝑎𝑛𝜋𝑛(𝑐𝑜𝑠𝜃) + 𝑏𝑛𝜏𝑛(𝑐𝑜𝑠𝜃)}

(S27)
𝑆2(𝜃) =

∞

∑
𝑛 = 1

2𝑛 + 1
𝑛(𝑛 + 1)

{𝑏𝑛𝜋𝑛(𝑐𝑜𝑠𝜃) + 𝑎𝑛𝜏𝑛(𝑐𝑜𝑠𝜃)}

(S28)
𝑎𝑛 =

𝜓 '
𝑛(𝑦)𝜓𝑛(𝑥) ‒ 𝑚𝜓𝑛(𝑦)𝜓 '

𝑛(𝑥)

𝜓 '
𝑛(𝑦)𝜁𝑛(𝑥) ‒ 𝑚𝜓𝑛(𝑦)𝜁 '

𝑛(𝑥)



(S29)
𝑏𝑛 =

𝑚𝜓 '
𝑛(𝑦)𝜓𝑛(𝑥) ‒ 𝜓𝑛(𝑦)𝜓 '

𝑛(𝑥)

𝑚𝜓 '
𝑛(𝑦)𝜁𝑛(𝑥) ‒ 𝜓𝑛(𝑦)𝜁 '

𝑛(𝑥)

(S30)
𝜓𝑛(𝑧) =

𝜋𝑧
2

𝐽
𝑛 +

1
2

(𝑧)

(S31)
𝜁𝑛(𝑧) =

𝜋𝑧
2

𝐻 (2)

𝑛 +
1
2

(𝑧)

(S32)𝑥 = 2𝜋𝑎�̃�

(S33)𝑦 = 𝑚𝑥

(S34)𝑚 = 𝑛 + 𝑖𝑛'

(S35)
𝜋𝑛(𝑐𝑜𝑠𝜃) =

1
𝑠𝑖𝑛𝜃

𝑃1
𝑛(𝑐𝑜𝑠𝜃)

(S36)
𝜏𝑛 =

𝑑
𝑑𝜃

𝑃1
𝑛(𝑐𝑜𝑠𝜃)

where, m (complex in general) is the refractive index of the homogenous sphere, a is the radius of 

the sphere, J is the Bessel function of the 1st kind and H(2) denotes the Hankel functions. The 

argument z in Eqs. S30 and S31 is an arbitrary complex number; it may be equal to x or y. P1 

denotes the first order associated Legendre polynomial. 

The purpose of listing these equations is twofold: It establishes our notation and shows that all 

aspects of Mie scattering may indeed be written down analytically. In this context we mention that 

m in this paper is defined according to S34, with negative n’ for positive absorbance. This is the 

opposite sign convention from the one used in the standard reference book of Van De Hulst 3.



S.3. Iterative algorithm

Initialization: For , the complex refractive index  is initialized, where j is the index 𝑗 = 1 𝑚𝑗 = 𝑛𝑗 + 𝑖 𝑛'𝑗

of iteration. The real part of the refractive index, , is initialized with an estimated constant n0.  𝑛𝑗

The imaginary part, , is initialized with zero. 𝑛'𝑗

Following initialization, the iteration proceeds as follows: 

I. The formulas in supplementary materials, part S.2., together with Eq. 18 are 

used to predict the absorbance spectrum  from the complex refractive index 𝐴(𝑗)

.𝑚𝑗

II. The difference  between the measured spectrum  and the predicted 𝐸(𝑗) 𝐴𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

spectrum  is calculated according to:𝐴(𝑗)

(S37)𝐸(𝑗)(�̃�) = 𝐴𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(�̃�) ‒ 𝐴(𝑗)(�̃�)

III. From the difference and using Beer-Lambert’s law2, the next value for n’ is 

calculated according to:

, (S38)
𝑛'

𝑗 + 1(�̃�) = 𝑛'
𝑗(�̃�) +

𝑙𝑛(10)
4𝜋�̃�𝑑𝑒𝑓𝑓

𝐸(𝑗)(�̃�)

where  is the effective thickness of a sphere of radius a.
𝑑𝑒𝑓𝑓 =

4𝑎
3

IV. The negative values of n’  are set to zero. (�̃�)

V. A new value for n  is predicted according to:(�̃�)

(S39)𝑛𝑗 + 1(�̃�) = 𝑛0 + 𝐾𝑟𝑎𝑚𝑒𝑟𝑠 𝐾𝑟𝑜𝑛𝑖𝑔[𝑛'𝑗 + 1(�̃�)]

VI. The new complex refractive index is calculated according to: 

  (S40)𝑚𝑗 + 1(�̃�) = 𝑛𝑗 + 1(�̃�) + 𝑖 𝑛'𝑗 + 1(�̃�)



The complex refractive index  is updated and the next iteration with 𝑚𝑗 + 1(�̃�)

 is started. 𝑗 + 1

1. D. J. Griffiths, Introduction to Electrodynamics, 3 edn., Prentice-Hall, Upper Saddle River, 
1999.

2. W. W. Parson, Modern Optical Spectroscopy, Student Edition edn., Springer, Heidelberg, 
2009.

3. H. C. v. d. Hulst, Light scattering by small particles, Wiley, New York,, 1957.


