Electronic Supplementary Information

A highly selective fluorescent probe for *in vitro* and *in vivo* detection of Hg²⁺

Quan Zhou⁺, Zeming Wu⁺, Xiaohua Huang⁺, Fenfen Zhong⁺, Qingyun Cai^{+*}

[†]State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.

Figure S1. Fluorescence intensity changes of **RS** (10 μ M) in response to various metal species and ClO₄⁻ (100 μ M) in CH₃CN/H₂O. Excitation at 500 nm; emission 587 nm.

^{*}Corresponding author. Tex.: +86-73188821848. E-mail: <u>qycai0001@hnu.edu.cn</u>, <u>qycai0002@gmail.com</u>.

Figure S2. Plot of fluorescence intensity of RS (10 μ M) as a function of added Hg²⁺ (0.1-50 μ M) (λ_{ex} = 500 nm, λ_{em} = 587 nm).

Figure S3. The liner equation of ratio of fluorescence and Hg²⁺ concentration.

Figure S4 . Effect of pH on the emission intensity of free RS (10 μ M) and [Hg²⁺-RS] system (10:1, mole ratio, λ_{ex} = 500 nm, λ_{em} = 587 nm)

Figure S5. Infrared spectra of sensor RS (1), and sensor RS with 2.0 equiv. of $Hg^{2+}(2)$.

Figure S6. 1H NMR spectra of RS (1), and RS after addition of 2.0 equiv. $Hg(ClO_4)_2$ in CDCl₃ for 5 mins (2), 20 mins (3), and 30 mins (4).

Figure S7. ESI-MS spectrum of the product formed after Hg^{2+} assisted hydrolysis of RS.

Figure S8 Job's plot for RS and Hg²⁺ complexation (the total concentration of RS and Hg²⁺ was 50 μ M. $\lambda = 558$ nm)

Calculation of Association Constant

The association constant was determined from the fluorescence titration data according to a reported method ^[1] for a 1:1 metal-ligand binding mode. If a 1:1 metal-ligand complex is formed between a metal ion and a ligand, one can describe the equilibrium as follows:

$$M + Ligand \longrightarrow M (Ligand) \dots (1)$$

Where M and M(Ligand) denote a metal ion and its complex, respectively. The corresponding association constant, K, can be expressed as follows:

A response function for M is given below following the mass law:

where C_T denotes the total concentration of the ligand in the system, α defined as the ratio between the free ligand concentration ([C]) and the total concentration of ligand C_T :

 α can be determined from the emission changes in the presence of different concentrations of M:

where Fmax and Fmin are the limiting emission values for $\alpha = 1$ (in the absence of M) and $\alpha = 0$ (the ligand is completely complexed with M), respectively.

Figure S9. The bind constant of sensor RS and Hg2+ in CH3CN/H2O, 5:5, V/V. K=3.2 × 10⁷. LogK=7.5.

References

[1] R. Yang, K. Li, K. Wang, F. Zhao, N. Li, F. Liu, Anal. Chem. 2003, 75, 612-621.

Figure S10 MTT assay to determine the cytotoxic effect of compound RS and RS-Hg²⁺ complex in HeLa cells.

Figure 11. Fluorescence microscopic images of HeLa cells: treating with 100 μ M probe 1 and after addition100 μ M of Hg²⁺ (under green light) to the probe 1 treated cells.

Figure 11. Bright-field (E) and Fluorescence microscopic (F) images of three-day-old zebrafish incubated with Hg²⁺ (20 μ M)) and after addition of RS (20 μ M).

Ms of compound Rhodamine-NHNH $_2$

¹³C NMR of RS in CDCl₃

