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Ionization Probabilities 

Resonant Two Photon Ionization 

For a molecule with an ionization potential 𝐼𝑃 is irradiated with photons of energy ℏ𝜔, if there is an 

intermediate excited state (1) at an energy ℏ𝜔 above the ground state (0), then if 𝐼𝑃 < 2ℏ𝜔, the probability of 

these levels and the continuum (2) being populated is governed by the following rate equations assuming the 

lifetime of the excited state is long compared to laser pulse length 

𝑑𝑃0

𝑑𝑡
= −Γ1𝑃0  

𝑑𝑃1

𝑑𝑡
= Γ1𝑃0 − Γ2𝑃1  

𝑑𝑃2

𝑑𝑡
= Γ2𝑃1  

For a laser intensity 𝐼, the excitation rate from ground to excited state and ionization rate of the excited state 

are related to the cross sections 𝜎 for the respective processes by 

Γ1(𝐼) = 𝜎1
𝐼

ℏ𝜔
  

Γ2(𝐼) = 𝜎2
𝐼

ℏ𝜔
  

Solution of the rate equations assuming 𝐼 is constant and 𝑃0 = 1, 𝑃1 = 𝑃2 = 0 at 𝑡 = 0 are 

𝑃0 = exp(−Γ1𝑡)  

𝑃1 =
Γ1

Γ2−Γ1
[exp(−Γ1𝑡) − exp(−Γ2𝑡)]  

𝑃2 = 1 −
Γ2Γ1

Γ2−Γ1
[

1

Γ1
exp(−Γ1𝑡) −

1

𝑤2
exp(−Γ2𝑡)]  (S1) 
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where 𝑃1+1 = 𝑃2 is the resonant ionization probability. For low intensities where the ionization probabilities 

are low, expansion of the exponentials to second order gives 

𝑃1+1 = 1 −
Γ2Γ1

Γ2−Γ1
[

1

Γ1
(1 − Γ1𝑡 +

1

2
(Γ1𝑡)2) −

1

Γ2
(1 − Γ2𝑡 +

1

2
(Γ2𝑡)2)]  

𝑃1+1 ≈
1

2
Γ1Γ2𝑡2 =

1

2
𝜎1𝜎2 (

𝐼

ℏ𝜔
)

2
𝑡2  (S2)

  

 

Non-Resonant Multiphoton Ionization  

The N-photon non-resonant ionization rate is  

Γ𝑁 = 𝜎𝑁 (
𝐼

ℏ𝜔
)

𝑁
   

where 𝜎𝑁 is the multiphoton ionization cross section giving an ionization probability after a time 𝑡 

𝑃𝑁(𝐼) = 1 − exp (−𝜎𝑁 (
𝐼

ℏ𝜔
)

𝑁
𝑡)  (S3)  

 

 

Ion Yield from a Constant Gas Density Target 

Focussed Laser Beam 

The ionization rate Γ(𝐼) is a function of the intensity and therefore varies in space and time in the interaction 

region. The spatial dependence of this interaction becomes very strong when the beam is focussed. For a beam 

with a gaussian spatial profile, temporal profile 𝑓(𝑡) and peak intensity 𝐼0 focused by a spherical lens or 

mirror with no diffraction effects, the intensity is given by 

𝐼(𝑟, 𝑧, 𝑡) =
𝐼0

1+(
𝑧

𝑧0
)

2 exp (−
2𝑟2

𝑤0
2(1+(

𝑧

𝑧0
)

2
)
) 𝑓(𝑡)  (S4) 

 

where 𝑤0 is the waist radius defined as the distance from the axis at which the intensity drops to 1/e
2
, 

𝑧0 =
𝜋𝑤0

2

𝜆
 is the Rayleigh length defined as the distance along the propagation direction at which the intensity 

reduces by a factor of 2.  

 

The probability of ionization in at a position 𝑟, 𝑧 is given by  

𝑃(𝑟, 𝑧) = 1 − exp(− ∫ Γ(𝐼(𝑟, 𝑧, 𝑡′))𝑑𝑡′
+∞

−∞
)  

which for a rectangular pulse profile of length 𝜏 is simply 𝑃(𝑟, 𝑧) = 1 − exp(−Γ(𝐼(𝑟, 𝑧))𝜏). 
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The ion yield is obtained by integrating over the whole interaction volume. Assuming the gas has a constant 

number density 𝑛, for a volume of space 𝑟 → 𝑟 + 𝑑𝑟, 𝑧 → 𝑧 + 𝑑𝑧, the number of ions produced is 

𝑑𝑌 = 𝑛 𝑃(𝐼(𝑟, 𝑧)) 𝑑𝑉  

To find the total yield, it is more convenient to do this integration over shells of equal intensity  

𝑌 = 𝑛 ∫ 𝑃(𝑉)𝑑𝑉
𝑉𝑚𝑎𝑥

0
= 𝑛 ∫ 𝑃(𝐼)

𝑑𝑉

𝑑𝐼
𝑑𝐼

𝐼𝑚𝑖𝑛

𝐼0
  (S5) 

𝑑𝑉

𝑑𝐼
 represents the intensity shell over which the integration is performed from the maximum intensity 𝐼0 

(which corresponds to an interaction volume of zero) to some minimum intensity below which the ion yield 

can be neglected. 
𝑑𝑉

𝑑𝐼
 can be determined by obtaining an expression for the volume which encloses all 

intensities greater than 𝐼. Integrating along 𝑧 to get the volume inside the isointensity boundary defined by 𝐼 

gives 

𝑉 = ∫ 𝜋𝑟2𝑑𝑧
+𝑧𝑚𝑎𝑥

−𝑧𝑚𝑎𝑥
   

Rearranging Eqn S4 to obtain an expression for 𝑟2  

𝑉 = ∫ −
𝜋𝑤0

2

2
(1 + (

𝑧

𝑧0
)

2
) ln (

𝐼

𝐼0
(1 + (

𝑧

𝑧0
)

2
)) 𝑑𝑧

+𝑧𝑚𝑎𝑥

−𝑧𝑚𝑎𝑥
  

𝑧𝑚𝑎𝑥 = 𝑧0𝜉  

where 𝜉 = (
𝐼0

𝐼
− 1)

1/2
  

Making the substitution 𝑥 =
𝑧

𝑧0
 

𝑉 = −𝜋𝑤0
2𝑧0 ∫ (1 + 𝑥2) ln (

1+𝑥2

1+𝜉2) 𝑑𝑥
𝜉 

0 
  

Integation yields 
1
 

𝑉 = −
𝜋2𝑤0

4

𝜆
[𝑥 ln (

1+𝑥2

1+𝜉2) +
1

3
𝑥3 ln (

1+𝑥2

1+𝜉2) −
2

9
𝑥3  −

4

3
𝑥 +

4

3
tan−1 𝑥]

0

𝜉

  

 

𝑉 = 𝑉0 (
2

9
𝜉3 +

4

3
𝜉 −

4

3
tan−1 𝜉)   (S6) 

where 𝑉0 =
𝜋2𝑤0

4

𝜆
  

 

When 𝐼0 ≫ 𝐼, only the first term is significant giving   

 𝑉(𝐼0 ≫ 𝐼) →
2

9
𝑉0𝜉3 =

2

9
𝑉0 (

𝐼0

𝐼
)

3/2
 

Therefore the volume within an iso-intensity surface increases as 𝐼0
3/2

 which is why the ion yield increases 

with this trend when the peak intensity significantly exceeds the intensity at which ionization saturates. 

 

Returning to the general case, differentiating eqn. S6 gives 

                                                 
1
 http://integrals.wolfram.com/  

http://integrals.wolfram.com/
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𝑑𝑉

𝑑𝐼
= −

1

3

𝑉0

𝐼0
𝜉(1 + 𝜉2)(3 + 𝜉2)  

𝑑𝑉

𝑑𝐼
= −

1

3

𝑉0

𝐼
(

𝐼0

𝐼
− 1)

1/2
(

𝐼0

𝐼
+ 2)   (S7) 

The fact that 
𝑑𝑉

𝑑𝐼
< 0 simply indicates that the volume of the shell decreases as the intensity at the boundary 

increases (while 𝐼0 is constant). From eqn. S5 the total ion yield is 

𝑌 =
𝑛𝑉0

3
∫

𝑃(𝐼)

𝐼
(

𝐼0

𝐼
− 1)

1/2
(

𝐼0

𝐼
+ 2) 𝑑𝐼

𝐼0

𝐼𝑚𝑖𝑛
   (S8) 

 

Unfocussed Laser Beam  

Consider interaction of a minimally diverging laser beam with gaussian spatial profile and a full width half 

maximum of 𝐷. The intensity at a radius 𝑟 is 

𝐼(𝑟) = 𝐼0 exp (−4 ln 2 (
𝑟

𝐷
)

2
)   

Ions are collected from a length 𝐿 of the interaction between the laser and gas. The volume of the beam 

experiencing an intensity 𝐼 is 𝑑𝑉 = 2𝜋𝑟𝐿 𝑑𝑟. If the intensity and ionization probability is low (𝑃 ≪ 1), the 

ionization probability for a N-photon non-resonant process is  

𝑃 = 𝜎𝑁 (
𝐼

ℏ𝜔
)

𝑁
𝜏   

Therefore the number of ions produced due to interactions at intensity 𝐼 with a gas of density 𝑛 is 

𝑑𝑌𝑁 = 𝑃𝑛 𝑑𝑉 = 2𝜋𝐿𝜎𝑁 (
𝐼

ℏ𝜔
)

𝑁
𝜏𝑛 𝑟𝑑𝑟  

Integrating this to obtain the total ion yield 𝑌 gives 

𝑌𝑁 =
𝜋𝐿𝑛

4𝑁 ln 2(ℏ𝜔)𝑁  𝐷2𝜏𝜎𝑁𝐼0
𝑁  

For N = 3, in terms of the laser pulse energy E, this becomes (where for a gaussian beam 𝐼0 =
4 ln 2

𝜋

𝐸

𝜏𝐷2 )  

𝑌3 =
16(ln 2)2𝐿𝑛𝜎3

3𝜋2(ℏ𝜔)3𝐷4   
𝐸3

𝜏2  (S9) 

 

For the resonant two photon ionization case using the ionization probability from equation S2 gives   

𝑌1+1 =
(ln 2)𝐿𝑛𝜎1𝜎2

(ℏ𝜔)2𝜋𝐷2  𝐸2  (S10) 

 

 

 

 


