Supporting Information

MnO₂ nanosheets based fluorescent sensing platform with organic dyes as probe with excellent analytical properties

Chunxia Wang, Wanying Zhai, Yuexiang Wang, Ping Yu, and Lanqun Mao*

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China.

^{*}Corresponding author. Fax: +86-10-62559373, E-mail: lqmao@iccas.ac.cn.

Oligonucleotides	Oligonucleotide Sequences (from 5' to 3')
FAM-T15	
A15	ΑΑΑ ΑΑΑ ΑΑΑ ΑΑΑ
FAM-PmiR	GG CAT TCA CCG CGT GCC TTA
miR124a	UAA GGC ACG CGG UGA AUG CC
FAM-TBA	GGT TGG TGT GGT TGG

Table S1. Oligonucleotide sequences

Fig. S1 (A) TEM image of MnO_2 nanosheets. (B) AFM image of MnO_2 nanosheets. (C) Energy dispersive X-ray spectroscope (EDS) spectrum of MnO_2 nanosheets. (D) Zeta potential distribution of MnO_2 nanosheets. (E) UV-vis spectra of MnO_2 nanosheets at various concentrations. (F) Plot of absorbance at 380 nm against the concentration of MnO_2 nanosheets.

Fig. S2 The parameters used in equation1.

MnO ₂ (µM)	A _{ex} ^[a]	$A_{em}^{[b]}$	CF ^[c]	$F_{\rm obsd}$ ^[d]	$F_{cor}^{[e]}$	$E_{\rm obsd}$ [f]	$E_{\rm cor}$ ^[g]
0	0.006	0.004	1.008	1197	1207	0	0
4	0.031	0.023	1.058	1127	1193	0.0584	0.0116
10	0.060	0.045	1.119	982.0	1099	0.1796	0.0896
20	0.114	0.087	1.241	783.6	972.0	0.3453	0.1946
30	0.138	0.099	1.290	621.5	802.1	0.4807	0.3355
40	0.181	0.132	1.398	464.5	649.0	0.6119	0.4623
50	0.222	0.164	1.510	339.2	512.2	0.7166	0.5756
60	0.260	0.193	1.619	229.8	372.1	0.8080	0.6917
80	0.332	0.246	1.841	80.16	147.6	0.9330	0.8777
100	0.400	0.298	2.078	21.65	45.05	0.9819	0.9626

Table S2. IFE of MnO₂ nanosheets on the fluorescence of FAM-T15

^[a] A_{ex} is the absorbance of FAM-T15 with the addition of MnO₂ nanosheets at 490 nm. ^[b] A_{em} is the absorbance of FAM-T15 with the addition of MnO₂ nanosheets at 522 nm. ^[c] Corrected factor (*CF*) was calculated as F_{cor}/F_{obsd} . ^[d] F_{obsd} is the measured fluorescence intensity of FAM-T15 with the addition of MnO₂ nanosheets at 522 nm. ^[e] F_{cor} is the corrected fluorescence intensity with eq.1 by removing IFE from the measured fluorescence intensities of FAM-T15 in the absence and presence of MnO₂ nanosheets, respectively. ^[g] $E_{cor}=1-F_{cor}/F_{cor,0}$. *F*_{cor,0} and *F*_{cor} are the corrected fluorescence intensities of FAM-T15 in the absence and presence of MnO₂ nanosheets, respectively. ^[g] $E_{cor}=1-F_{cor}/F_{cor,0}$.

MnO ₂ (µM)	A _{ex} ^[a]	A _{em} ^[b]	CF ^[c]	$F_{\rm obsd}$ ^[d]	$F_{cor}^{[e]}$	$E_{\rm obsd}$ [f]	E_{cor} ^[g]
0	0.007	0.004	1.0099	1083	1093	0	0
4	0.026	0.018	1.0472	1018	1066	0.0600	0.02537
10	0.055	0.04	1.1072	946.7	1048	0.1258	0.04171
20	0.098	0.071	1.1996	846.6	1015	0.2182	0.07150
30	0.146	0.107	1.3125	742.9	975.1	0.3140	0.1085
40	0.196	0.147	1.4436	639.4	923.0	0.4096	0.1560
50	0.236	0.177	1.5535	567.8	882.0	0.4757	0.1935
60	0.272	0.204	1.6584	506.5	840.0	0.5323	0.2320
80	0.361	0.277	1.9573	381.2	746.1	0.6480	0.3178
100	0.424	0.32	2.1767	299.3	651.5	0.7236	0.4043

Table S3. IFE of MnO₂ nanosheets on the fluorescence of FAM-T15/A15

^[a] A_{ex} is the absorbance of FAM-T15/A15 with the addition of MnO₂ nanosheets at 490 nm. ^[b] A_{em} is the absorbance of FAM-T15/A15 with the addition of MnO₂ nanosheets at 522 nm. ^[c] Corrected factor (*CF*) was calculated as F_{cor}/F_{obsd} . ^[d] F_{obsd} is the measured fluorescence intensity of FAM-T15/A15 with the addition of MnO₂ nanosheets at 522 nm. ^[e] F_{cor} is the corrected fluorescence intensity with eq.1 by removing IFE from the measured fluorescence intensity (i.e., F_{obsd}). ^[f] E_{obsd} =1- $F_{obsd}/F_{obsd,0}$. $F_{obsd,0}$ and F_{obsd} are the observed fluorescence intensities of FAM-T15/A15 in the absence and presence of MnO₂ nanosheets, respectively. ^[g] E_{cor} =1- $F_{cor}/F_{cor,0}$. $F_{cor,0}$ and F_{cor} are the corrected fluorescence intensities of FAM-T15/A15 in the absence of MnO₂ nanosheets, respectively.

Fig. S3 Corrected suppressed efficiency ($E_{cor} = 1 - F/F_0$) of FAM-T15 (blue dots), FAM-T15 (20 µL, 40 nM) after hybridization with A15 (40 µL, 80 nM) (orange dots), with the presence of different concentrations of MnO₂ nanosheets. *CF* is the corrected factor listed in Table S1 and S2. F_0 and *F* are the corrected fluorescence intensities of FAM-T15 (20 µL, 40 nM), and FAM-T15 (20 µL, 40 nM) after hybridization with A15 (40 µL, 80 nM), with the presence of MnO₂ nanosheets. Excitation wavelength, 490 nm. Emission wavelength, 522 nm.

Fluorescence anisotropy measurement of MnO₂ nanosheets towards FAM, FAM-T15, and FAM-T15/A15.

By using fluorescence anisotropy measurements, the binding of target molecules will yield a significant change in the rotational diffusion rates of the labeled dyes, resulting in detectable changes in their anisotropy values. According to the literatures, 1,2 the anisotropy (*r*) is defined as $r = (I_{VV}-GI_{VH})/(I_{VV} + 2GI_{VH})$. Where I is the measured maximum fluorescence intensity at 522 nm, the subscripts V and H refer to the orientation (vertical or horizontal) of the polarizer for the intensity measurements, with the first subscript indicating the position of the excitation polarizer and the second for the emission polarizer, and $G = I_{\rm HV}/I_{\rm HH}$. In this case, as shown in Fig. S4, addition of MnO₂ nanosheets to FAM solution produces negligible change in anisotropy. This illustrates that the binding of MnO₂ nanosheets to FAM are relatively too weak to hinder the rotation of FAM (Fig. S4, olive dots and orange dots). In contrast, the anisotropy value (r) of FAM-T15 (~ 0.03, Fig. S4, blue dots) was significantly increased when MnO₂ nanosheets was introduced (~ 0.09, Fig. S4, red dots), suggesting a strong and rapid adsorption of FAM-T15 onto MnO₂ nanosheets. This efficient adsorption was due to the strong Van der Waals interaction between the nucleobases and MnO₂ nanosheets. Moreover, in the presence of target A15, the fluorescence anisotropy value varied from ~ 0.09 (Fig. S4, red dots) for FAM-T15 in the presence of MnO_2 nanosheets to ~ 0.05 (Fig. S4, black dots) for FAM-T15/A15 in the presence of MnO_2 nanosheets, this was probably due to the negatively charged FAM-T15/A15 brings a change of DNA conformation, leading to desorption of FAM-T15/A15 from the surface of MnO2 into the solution.

Fig. S4 (A) Schematic diagram for the measurements of fluorescence anisotropy. V (vertical) and H (horizontal) indicate the orientation of the excitation and emission polarizers, respectively. (B) Fluorescence anisotropy value (*r*) of FAM (2 μ L, 20 nM, olive dots), FAM-T15 (2 μ L, 20 nM, blue dots), FAM (2 μ L, 20 nM) with the addition of MnO₂ nanosheets (60 μ L, 60 μ M, orange dots), FAM-T15 (2 μ L, 20 nM) with the addition of MnO₂ nanosheets (60 μ L, 60 μ M, red dots), and FAM-T15 (2 μ L, 20 nM) in the presence of MnO₂ nanosheets (60 μ L, 60 μ M) and after hybridization with A15 (10 μ L, 100 nM) (black dots). Excitation wavelength, 490 nm. Emission wavelength, 522 nm.

Selectivity of MnO₂ nanosheets-based sensing platform towards thrombin

To evaluate the selectivity of FAM-TBA for thrombin with the MnO_2 nanosheets-based sensing platform, different kinds of species that were considered to possibly interfere with thrombin sensing were separately added into the aqueous solution of FAM-TBA. As displayed in Fig. S5A, the addition of each kind of species results in almost no change in fluorescence, as compared with the addition of thrombin (10 μ M). As depicted in Fig. S5B, the histogram of relative fluorescence intensity of FAM-TBA towards thrombin and non-target clearly shows that this platform possesses a high selectivity over other analytes.

Fig. S5 (A) Fluorescence spectra of FAM-TBA (4 μ L, 40 nM) after incubation with glucose (100 μ M, olive curve), Mg²⁺ (100 μ M, navy curve), uric acid (100 μ M, pink curve), aspartic acid (100 μ M, dark cyan curve), arginine (100 μ M, dark yellow curve), Zn²⁺ (100 μ M, wine curve), blank (red curve), lgG (1 μ M, magenta curve), BSA (1 μ M, blue curve), and thrombin (10 μ M, black curve), respectively, after the addition of MnO₂ nanosheets (60 μ L, 60 μ M). (B) Histogram of *F*/*F*₀ at 522 nm obtained from Fig. S5A. *F*₀ and *F* denote the intensities of FAM-TBA (4 μ L, 40 nM) and MnO₂ nanosheets (60 μ L, 60 μ M) in the absence and presence of analytes, respectively. Excitation wavelength, 490 nm. Emission wavelength, 522 nm.

REFERENCES

- 1 J. R. Lakowicz, *Principles of Fluorescence Spectroscopy*, 2nd ed.; Kluwer Academic/Plenum Publishers: New York, 1999.
- J. H. Liu, C. Y. Wang, Y. Jiang, Y. P. Hu, J. S. Li, S. Yang, Y. H. Li, R. H. Yang, W. H. Tan and C. Z. Huang, *Anal. Chem.*, 2013, **85**, 1424-1430.