Electronic Supplementary Information

Nanoporous Copper Oxide Ribbons Assembly of Free-Standing Nanoneedles as Biosensors for Glucose

Shaodong Sun, Yuexia Sun, Anran Chen, Xiaozhe Zhang and Zhimao Yang*

School of Science, State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Collaborative Innovation Center of Suzhou Nano Science and Technology, Xi'an Jiaotong University, Xi'an 710049, ShaanXi, People's Republic of China.

E-mail: zmyang@mail.xjtu.edu.cn (Z. M. Yang).

Sampl	Molar	of	Volume	ratio	Concentratio	Reaction	Reaction
e	CuSO ₄		between	water and	n of NaOH	temperature	time
			ethanol				
Α	0.12 mmol		1:6		2 mol/L	80 °C	10 min
В	0.12 mmol		1:3		2 mol/L	80 °C	10 min
С	0.12 mmol		1:1		2 mol/L	80 °C	10 min
D	0.12 mmol		2:1		2 mol/L	80 °C	10 min

Table S1 Sample denotations and their corresponding detailed experimental conditions

Figure S1 FESEM images of the Cu₃(OH)₄(SO₄) precursors. (a) Low-magnification; (b) High-magnification.

Figure S2 (a) Amperometric response of the as-prepared Sample B (a), Sample C (b) and Sample D (c) with successive addition of glucose to the 0.1 M KOH solution at regular intervals. The applied potential was +0.55 V (vs. Ag/AgCl (sat'd KCl) reference), and the insets are the corresponding current–glucose concentration calibration curve.

Figure S3 Anti-interference property of CuO/NFs/GCE to the stepwise addition of 1 mM AA, 1 mM UA, and 1 mM NaCl, followed by the successive addition of 1 mM glucose solutions.

Figure S4 Nitrogen adsorption–desorption isotherms of the as-prepared CuO nanostructures. (a) Sample A; (b) Sample B; (c) Sample C; (d) Sample D.

Table S2. Comparison of the keep	y performance charac	cteristics of some o	f existing cataly	ysts for enzyme	e-free
	electrooxidati	on of glucose.			

Type of electrodes	Potential (V)	Sensitivity (µA mM ⁻¹ cm ⁻²)	Linear range (up to, mM)	LOD (µM)	Ref
CuO/MWCNTs	0.7	2109	3	0.8	1
CuO nanoparticles	0.55	1397	2.3	0.5	2
CuO nanoleaf/MCNTs	0.35	664.3	0.9	5.7	3
CuO nanorods/graphite	0.6	371.4	8	4.0	4
CuO nanospheres	0.6	404.5	2.6	1.0	5
CuO fibers	0.4	431	2.5	0.8	6
CuO nanobelts	0.6	582	-	< 1.0	7
Hierarchical nanoneedle-	0.55	2241	4	0.05	Current work
aggregated CuO ribbons					

[1] J. Yang, L. C. Jiang, W. D. Zhang, and S. Gunasekarana, Talanta, 2010, 82, 25.

[2] S. Liu, J. Q. Tian, L. Wang, X. Y. Qin, Y. W. Zhang, Y. L. Luo, A. M. Asiri, A. O. Al-Youbi, and X. P. Sun, *Catal. Sci. Technol.*, 2012, 2, 813.

- [3] Z. Y. Yang, J. S. Feng, J. S. Qiao, Y. M. Yan, Q. Y. Yu, and K. N. Sun, Anal. Methods, 2012, 4, 1924.
- [4] X. Wang, C. Hu, H. Liu, G. Du, X. He, and Y. Xi, Sens. Actuators B, 2009, 144, 220.
- [5] E. Reitz, W.Z. Jia, M. Gentile, Y. Wang, and Y. Lei, *Electroanalysis*, 2008, 20, 2482.
- [6] W. Wang, L. L. Zhang, S. F. Tong, X. Li, and W. B. Song, Biosens. Bioelectron., 2009, 25, 708.
- [7] T. Soejima, H. Yagyu, and N. Kimizuka, S. Ito, RSC Adv., 2011, 1, 187.