## Supplementary Information

#### **Experimental**

#### Materials and Regents

The Ag ink (ECM-100 AF5000) and resist ink (TF-200 FRI) used were purchased from TAIYO INK MFG. CO., LTD. (Japan). A piece of filter paper (Munktell M-1, Germany) was used as the substrate. The water-repellent ink used (Fluorosurf FC-3030C-30) was purchased from Fluoro Technology Co. (Japan). The other reagents used were purchased from Wako Pure Chemical Industries (Japan).

#### Equipment for screen-printing

We used an LS-150TV screen printer (New Long Seimitsu Kogyo, Japan) to fabricate the reference electrode. Screen-pattern films designed using a CAD soft were ordered from Mitani Micronics (Japan). The Ag and Ag/AgCl pattern films were made of polyester mesh films (120  $\mu$ m in thickness). The resist film used was a metal-masked film (120  $\mu$ m in thickness). An ultrasonic homogenizer (UH-150, STM, Japan) was used to prepare the Ag/AgCl ink. Finally, we used an NR-2000 data logger (Keyence, Japan) to measure the open-circuit potentials.

# Processes for fabricating the water-repellent layer and the synthesized reference electrode

Figure S1 shows the process for fabricating the synthesized paper-based reference electrode. First, a piece of filter paper was cut into dimensions of  $22 \times 65$  mm (a). Next, masking tape was put on the filter paper (b). The dimensions of the pattern formed using the masking tape is shown in Fig. S1. A layer of the water-repellent ink was then coated on the masked substrate and dried for 1 day (c). After the ink had dried, the masking tape was removed (d). A layer of the Ag/AgCl ink was printed on one side of the water-repellent-treated paper substrate (e). Next, a Ag conducting layer was formed by printing a layer of the Ag ink (f). The layers of the Ag and Ag/AgCl inks were cured at 120 °C for 20 min. Then, a layer of the resist ink was printed and cured at 100 °C for 20 min (g). Next, 0.5 mL of a saturated KCl solution, which consisted of 246 mg of KCl in 1 mL of ultrapure water, was dropped on the opposite side of the water-repellent-treated paper substrate three times (h). Finally, a layer of the resist ink was printed and dried at 120 °C for 20 min (i).



**SI Figure 1** Schematic showing the process for fabricating the synthesized Ag/AgCl reference electrode.

### SI Table 1

Comparison of the performance of the synthesized reference electrode and those of the solid-state Ag/AgCl reference electrodes reported in the literature

| Fabrication          | Liquid junction | Electrolyte layer  | Test solution                                  | Set-up time (min) | Stability (h) | Ref. |
|----------------------|-----------------|--------------------|------------------------------------------------|-------------------|---------------|------|
| technique            | - ·             |                    |                                                | -                 |               |      |
| Screen-printing      |                 |                    |                                                |                   |               |      |
| (Reference electrode | Daman           | Saturated KCl      | 0.1 M.No. SO solution                          | -1                | 75            | This |
| synthesized in the   | Paper           | in paper substrate | 0.1 M Na <sub>2</sub> SO <sub>4</sub> solution | <1                | 75            | work |
| current study)       |                 |                    |                                                |                   |               |      |
| Photolithography,    |                 |                    | 50MN-OU/ZU DO                                  |                   |               |      |
| Electrochemical      | Hydrophilic     | Saturated KCl,     | 50 mM NaOH/KH <sub>2</sub> PO <sub>4</sub>     |                   |               |      |
| oxidation and        | polymer         | AgCl               | buffer containing                              | 240               | 120           | 9    |
| screen-printing      | polymer         |                    | 0.1 M KCl at pH7.0                             |                   |               |      |
| Screen-printing      | None            | Saturated KCl      | 1.0 M KNO3 solution                            | 180               | 100           | 10   |
|                      |                 | in UV curing resin | (pH: N/A)                                      |                   |               |      |
| Screen-printing      |                 |                    |                                                |                   |               |      |
| (Reference electrode |                 | Saturated KCl      | Phosphate buffer solution                      | 120               | Longer than   | 14   |
| synthesized in the   | PDMS-PEG        | in PDMS film       | at pH 7.0                                      | 120               | 1680          | 14   |
| current study)       |                 |                    |                                                |                   |               |      |