Supplementary material (ESI) for Analyst This journal is © The Royal Society of Chemistry 2015

Electronic Supporting Information

for

The pophyrin-loaded liposome and the graphene oxide used for the membrane pore-forming protein assay and the inhibitor screening

Zhongde Liu[†], Tengfei Long, Shuang Wu and Chong Li[†]

Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715

Figures

Fig. S1 Characterization of the TAPP-loaded liposome and the GO. (a) TEM morphologies of the TAPP-loaded liposomes; (b) the size distribution of the TAPP-loaded liposomes measured by DLS; (c) AFM image of the obtained GO sheets; (d) the section analysis along the scored line as shown in Fig. c.

Fig. S2 Fluorescence spectra obtained for alone TAPP-loaded liposome (black curve) and the TAPP-loaded liposome after two weeks of storage at 4 0 C plus graphene oxide (red curve). Concentration: Total lipid concentration, 125 µg ml⁻¹; GO, 8.0 µg ml⁻¹.

Supplementary material (ESI) for Analyst This journal is © The Royal Society of Chemistry 2015

Fig. S3 (a) The lag time was considerably longer at room temperature (red) than at 37 0 C (black) under the same concentration of PLA₂. (b) The fluorescence response was also significantly enhanced by the presence of 0.8 mg mL⁻¹ HSA (black) as compared to the same conditions without HSA (red), yet HSA alone did not cause the release of TAPP molecules (blue). Concentration: Total lipid concentration, 125 µg ml⁻¹; GO, 8.0 µg ml⁻¹; PLA₂, 2.4 nM.

Fig. S4 A linear plot of ΔI_F at 648 nm versus the α -toxin concentration. Concentration: Total lipid concentration, 125 µg ml⁻¹; GO, 8.0 µg ml⁻¹. Incubation time, 40 min.