## A simple electrochemical platform based on pectin stabilized gold nanoparticles for picomolar detection of biologically toxic amitrole

Veerappan Mani<sup>1</sup>, Rajkumar Devasenathipathy<sup>1</sup>, Shen-Ming Chen<sup>1\*</sup>, V.S. Vasantha<sup>2\*</sup>, M. Ajmal Ali<sup>3</sup>, Sheng-Tung Huang<sup>1,4</sup>, Fahad M. A. Al-Hemaid<sup>2</sup>

<sup>1</sup>Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan (R.O.C).

<sup>2</sup>Deaprtment of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu-625 021, India.

<sup>3</sup>Department of Botany and Microbiology, College of Science, King Saud University Riyadh 11451, Saudi Arabia.

<sup>4</sup>Graduate Institute of Biomedical and Biochemical Engineering, National Taipei University of Technology, Taipei, Taiwan (Republic of China).

<sup>1</sup>\*Corresponding Author. S.-M. Chen Fax: +886 2270 25238; Tel: +886 2270 17147, E-mail: <u>smchen78@ms15.hinet.net</u>

<sup>2</sup>\*Corresponding Author. V.S. Vasantha Tel.: +91 452 245 8471x108; fax: +91 452 245 8449. Email: <u>sivarunjan@gmail.com</u>



Fig. S1. The chemical structure of amitrole



Fig. S2 (A) UV-visible spectrum and XRD pattern of CCLP-GNPs.



**Fig. S3** The selectivity of CCLP-GNPs/GCE to detect amitrole (500 pM). Interferences: 1000 folds excess concentration (500 nM) of Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>, Mg<sup>2+</sup>, Ba<sup>2+</sup>, Fe<sup>2+</sup>, Co<sup>2+</sup>, Cl<sup>-</sup>, F<sup>-</sup> and I<sup>-</sup>; 100-folds excess concentration (50 nM) of trazine, atraton, 2-hydroxy atrazine and ametryn.

| CE |
|----|
| ŗ  |

| Samples     | Added (pM) | Found (pM) | Recovery (%) | *RSD (%) |
|-------------|------------|------------|--------------|----------|
| Tap water   | 100        | 104.1      | 104.1        | 3.2      |
|             | 200        | 204.6      | 102.3        | 3.2      |
| River water | 100        | 96.7       | 96.7         | 3.4      |
|             | 200        | 204.6      | 102.3        | 3.7      |

\* Relative Standard Deviation of 3 individual measurements.