Supporting Information For:

Biomimetic High Sensitive Detection of Carbon Dioxide by Pyrimido[1,2-a]benzimidazole derivative: Combining Experimental and Theoretical Studies

Guomin Xia, Chengyan, Ruan, Hongming Wang.

Institute for advanced study, Nanchang University, Nanchang, 330031, China.

Experimental

Chemicals and reagents

All commercially available reagents and solvents were purchased from commercial suppliers and used without further purification unless otherwise stated. Absorption spectrometry was performed using Gold S54T spectrophotometer of Lengguang Company, and fluorescence spectrometry was performed using F-7000 FL Spectrophotometer of Hitachi. Melting points were determined in open capillaries. ¹H NMR and ¹³C NMR spectra were recorded with a Bruker AVANCE 500 spectrometer with use of the deuterated solvoent as the lock and TMS as an internal reference. Elemental analysis was performed on Elementar Vario vario EL III. Mass spectra were acquired using a triple quadrupole mass spectrometer (6430 QqQLC/MS system; Agilent Technologies, USA) equipped with an orthogonal ESI source.The crystals for X-ray diffraction analyses were grown in dichloromethane by adding n-hexane to slow diffuse. The X-ray diffraction experiment was carried out using Bruker SMART APEX-II Singlecrystal diffractometer. Tetrabutylammonium salts (F⁻, AcO⁻, Cl⁻, Br⁻ and I⁻) were all >98% pure and the solutions used in titrations were prepared in fresh dry acetonitrile (CH₃CN).

Scheme S1. The synthesis of compound P1H

Synthesis of 3,4-Dichlorocyclobutene-1,2-dione

A mixture of squaric acid (1.14 g, 10 mmol), thionyl dichloride (1.8 ml, 20 mmol) and DMF (200ul) in dry benzene (10 ml) was refluxed for 6 h at 60°C. The solvent was evaporated in vacuo and hexane (20 ml) was added, then the soluble products were separated from gummy precipitates. Concentrating and cooling to give yellow crystalline which was used in the next step without further purification (0.82 g, 5.4mmol), yield 54%^[1].

Synthesis of P1H

A anhydrous ethanol (30ml) solution of 2-aminobenzimidazole (798mg, 6mmol) was added into fresh 3,4-Dichlorocyclobutene-1,2-dione (750mg, 5mmol) under vigorous stirring, and the mixture was stirred at room temperature for 20min. Then the solvent was removed in vacuo and the residue purified on a column (1% methanol in chloroform as eluent) to give P1H in 41% yield (563mg, 2.08mmol) M.P. 252-253°C. ¹H NMR (400 MHz, DMSO-d₆) ppm 10.08 (s, 1H), 8.39 (d, J = 8.22 Hz, 1H), 7.94 (d, J = 8.26 Hz, 1H), 7.70-7.46 (m, 2H), 4.49 (q, J = 7.11 Hz, 2H), 1.46-1.32 (m, 3H). ¹³C NMR (400 MHz, DMSO-d₆), 163.35(1C), 152.60(1C), 147.44(1C), 145.28(1C), 137.23(1C), 127.60(1C), 127.38(1C), 123.23(1C), 120.24(1C), 113.93(1C), 110.99(1C), 63.15(1C), 14.45(1C). Anal. Calcd for P1H: C, 56.64; H, 3.66; N, 15.24. Found: C, 56.60; H, 3.70; N, 15.21.

Figure S1. (a)The ¹H and ¹³C-NMR of P1H in DMSO-d₆ and (b)The ¹H-NMR of P1H in CD₃CN-d₃.

Figure S2. UV-vis spectra taken over the course of titration of receptor P1H (50 μ M) with [Bu₄N]X in CH₃CN.

Figure S3. Emission spectra taken upon addition of [Bu₄N]X to P1H (50Mm) in CH₃CN.; excitation wavelength=360 nm.

Figure S4. IR spectra taken over the course of titration of receptor P1H (4.5mM) with $[Bu_4N]F$ followed by CO₂ gas.

Figure S5. Mass spectrum taken upon addition of $[Bu_4N]F$ to P1H in CH₃CN and then bubbling with enough CO₂.

C ₁₃ H ₁₀ ClN ₃ O ₂
275.69
296(2) K
0.71073 Å
Orthorhombic, P b c a
a = 7.240(6) Å $alpha = 90$ deg.
b = 11.439(10) A beta = 90 deg. c = 29.79(3) Å gamma = 90 deg.
2467(4) Å ³
8, 1.485 Mg/m ³
0.311 mm ⁻¹
1136
0.25 x 0.20 x 0.15 mm
2.74 to 17.19 deg.
-6<=h<=5, -9<=k<=9, -24<=l<=24
6405 / 735 [R(int) = 0.0654]
99.6 %
Semi-empirical from equivalents
0.954 and 0.928
Full-matrix least-squares on F ²
735 / 0 / 173
1.019
R1 = 0.0300, wR2 = 0.0756
R1 = 0.0435, $wR2 = 0.0823$
0 161 and -0 118 e Å ⁻³

Table S1. Crystal data and structure refinement for P1H

Optimazed structure

TS1					
1	6	0	-4.967285	0.193614	0.358034
2	6	0	-5.230085	-1.188133	0.362676
3	6	0	-4.212208	-2.112993	0.230387
4	6	0	-2.900775	-1.638527	0.091423
5	6	0	-2.660081	-0.245793	0.092002
6	6	0	-3.682197	0.693541	0.222024
7	1	0	-5.796014	0.887015	0.462014
8	1	0	-6.254013	-1.532590	0.470798
9	1	0	-4.407590	-3.179920	0.230947
10	1	0	-3.440776	1.755646	0.210577
11	6	0	-0.797943	-1.453846	-0.149401

12	6	0	1 320271	-0 686176	-0 366428
10		0	0.077010	0.000110	0. 200420
13	6 6	0	0.877610	0.654209	-0.302683
14	6	0	-0.456466	0.968323	-0.148680
15	5 1	0	-0.682784	2.285109	-0.056429
16	5 7	0	-1.747007	-2.359377	-0.057160
17	7 7	0	-1.276777	-0.124022	-0.063376
18	3 7	0	0.506998	-1.711407	-0.308683
19	6	0	2.769458	-1.069803	-0.537807
20) 8	0	3. 171002	-1.732434	-1.459731
21	. 8	0	3. 513817	-0.634761	0.468065
22	2 6	0	4.921374	-0.951491	0.406488
23	6	0	5. 572321	-0.360037	1.628594
24	1	0	5. 326487	-0.535426	-0. 519275
25	5 1	0	5.029731	-2.038120	0.367597
26	5 1	0	6.642138	-0.582117	1.615413
27	· 1	0	5.446739	0.724784	1.652035
28	8 1	0	5.145438	-0.782336	2. 541189
29) 17	0	2.057969	1.924578	-0. 493555
30) 9	0	-2.167548	3.263479	0.095399
31	. 9	0	-0.185768	3. 599185	0.019451

TS2

1	6	0	4.918021	0.071361	0.244433
2	6	0	5.164892	2 -1.306799	0.373847
3	6	0	4.13966	3 -2.235798	0.324035
4	6	0	2.82999	3 -1.770948	0.146088
5	6	0	2.605272	2 -0.382064	0.030795
6	6	0	3. 630433	2 0. 555055	0.067834
7	1	0	5.74955	2 0. 767010	0.278988
8	1	0	6. 18615	6 -1.647795	0.510708
9	1	0	4.33395	0 -3.299056	0.416636
10	1	0	3. 43141	5 1.613334	-0.051781
11	6	0	0.72563	0 -1.566293	-0.114227
12	6	0	-1.35272	6 -0.723459	-0. 405240
13	6	0	-0.84708	5 0. 589730	-0. 428505
14	6	0	0. 49035	0.886976	-0.282986
15	7	0	1.66060	0 -2.482879	0.053779
16	7	0	1.23340	6 -0.249234	-0.131588
17	7	0	-0. 58909	0 -1.786966	-0.258667
18	6	0	-2.81685	3 -1.032286	-0. 582520
19	8	0	-3. 268702	2 -1.568174	-1.562268
20	8	0	-3. 522422	2 -0.667373	0.479286
21	6	0	-4.944533	3 -0.912155	0.417199
22	6	0	-5.54450	1 -0. 426902	1.710125

23	1	0	-5.105113	-1.982222	0.265116
24	1	0	-5.347640	-0.381233	-0.448850
25	1	0	-6.623600	-0.598272	1.698767
26	1	0	-5.120814	-0.963139	2.562398
27	1	0	-5.367919	0.642570	1.845809
28	17	0	-1.977957	1.919296	-0.699440
29	6	0	1.134208	3.154218	0.271813
30	8	0	1.708733	3.497524	-0.688134
31	8	0	0.652173	3.169335	1.337602
P1-CC	ЮН				
1	6	0	4.877264	0.042694	0.917819
2	6	0	5.152575	-1.298262	0.683565
3	6	0	4.159994	-2.142307	0.199113
4	6	0	2.885356	-1.597712	-0.045655
5	6	0	2.638112	-0.215165	0.159370
6	6	0	3.604189	0.615322	0.656524
7	1	0	5.655655	0.690088	1.304306
8	1	0	6.142012	-1.687607	0.889794
9	1	0	4. 331435	-3.199231	0.034047
10	1	0	3. 444501	1.669292	0.823157
11	6	0	0. 795081	-1.318521	-0.451277
12	6	0	-1.346641	-0. 595043	-0. 449247
13	6	0	-0.952082	0.704593	-0. 184431
14	6	0	0. 430209	1.046146	-0. 150793
15	7	0	1.780754	-2.249740	-0. 435325
16	7	0	1.265102	-0.062307	-0.168603
17	7	0	-0.484067	-1.607031	-0.669257
18	6	0	-2.785350	-1.007837	-0.602431
19	8	0	-3. 191894	-1.571663	-1.585113
20	8	0	-3. 504853	-0.722329	0. 470538
21	6	0	-4. 905312	-1.080207	0.415800
22	6	0	-5. 525836	-0. 681580	1.727937
23	1	0	-4. 977999	-2.155031	0. 234252
24	1	0	-5.358350	-0. 559411	-0. 431233
25	1	0	-6. 587032	-0.941634	1.721505
26	1	0	-5. 049441	-1.204881	2.560059
27	1	0	-5. 436952	0.394606	1.892466
28	17	0	-2.159753	1.939589	-0.002861
29	6	0	1.047658	2.362651	-0.354069
30	8	0	2.159322	2.481632	-0.828705
31	8	0	0. 371248	3. 462291	-0.001055
32	1	0	-0.502448	3.246262	0.353894

TS3					
1	6	0	4.930369	-0.088734	0.015339
2	6	0	5.173497	-1.450460	0.271397
3	6	0	4.138620	-2.360046	0.369823
4	6	0	2.827763	-1.891494	0.213801
5	6	0	2.600498	-0.516369	-0.020063
6	6	0	3.644143	0.398374	-0.137682
7	1	0	5.768327	0.594638	-0.067244
8	1	0	6.197480	-1.790480	0.385361
9	1	0	4. 320258	-3.413186	0.553001
10	1	0	3. 467668	1.447185	-0.326686
11	6	0	0.720169	-1.715376	0.009186
12	6	0	-1.388471	-0.957093	-0.341895
13	6	0	-0.903855	0.363513	-0.496218
14	6	0	0. 426298	0.686541	-0.380543
15	7	0	1.659234	-2.605431	0.230740
16	7	0	1.223043	-0.397282	-0.138653
17	7	0	-0.593052	-1.966306	-0.094760
18	6	0	-2.845615	-1.326661	-0. 474145
19	8	0	-3.253878	-2.097106	-1.303102
20	8	0	-3.581803	-0.726548	0.447298
21	6	0	-4.999983	-1.010060	0.418687
22	6	0	-5.634308	-0.265125	1.562491
23	1	0	-5.136080	-2.090584	0.503502
24	1	0	-5.391965	-0.691397	-0.550281
25	1	0	-6.709706	-0.458202	1.569485
26	1	0	-5.220603	-0.592832	2.518862
27	1	0	-5. 479291	0.811543	1.462921
28	17	0	-2.042140	1.639811	-0.918686
29	6	0	0.949665	2.726238	0.575895
30	8	0	2.001990	2.674772	1.092818
31	8	0	-0.212996	3. 026280	1.052038
32	1	0	-0.925981	2.895238	0.395528
33	8	0	0.951495	3. 212890	-1.008243
34	1	0	0.934762	2.269813	-1.343607
35	1	0	1.795749	3.642814	-1.227380

^[1] Masatomi Ohno, Yoshihiko Yamamoto, Yuhichi Shirasaki and Shoji Eguchi. J. CHEM. SOC. PERKIN TRANS. 1993.