Single Fluorophore to Address Multiple Logic Gates

Saugata Sahu, Timir Baran Sil, Minati Das and G. Krishnamoorthy* Department of Chemistry Indian Institute of Technology Guwahati Guwahati, Assam, India, Pin – 781039

Supplemetary information

$$A = A_0 + \frac{(A_f - A_0)}{2C_h} [C_h + C_g + \frac{1}{K_a} - [(C_h + C_g + \frac{1}{K_a})^2 - 4C_h C_g]^{\frac{1}{2}}]$$

 $(S1)^1$

Where A_0 , A_f and A refer the absorbances of only DMAPIP-b, only Fe³⁺-DMAPIP-b complex and any intermediate Fe³⁺ concentration with DMAPIP-b. K_a refers the Fe³⁺ binding constant of DMAPIP-b. C_h and C_g indicate the concentration of DMAPIP-b and Fe³⁺ repectively.

The self-absorption effect is corrected using the following equation and the corrected emission value ($I_{corrected}$) has been used for quantum yield calculation.²

 $I_{corrected} = I_{observed} \times 10^{((A_{exc} + A_{em})/2)}$

Membership Functions

A zmf can be represented as

$$f(x;a,b) = \begin{cases} 1, x \le a \\ 1 - 2\left(\frac{x-a}{b-a}\right)^2, a \le x \le \frac{a+b}{2} \\ 2\left(\frac{x-b}{b-a}\right)^2, \frac{a+b}{2} \le x \le b \\ 0, x \ge b \end{cases}$$

A trimf can be represented as follow.

$$f(x;a,b,c) = \begin{cases} 0, x \le a \\ \frac{x-a}{b-a}, a \le x \le b \\ \frac{c-x}{c-b}, b \le x \le c \\ 0, x \ge c \end{cases}$$

A smf can be represented as follow.

Fig. S1. Job's plot for Fe^{3+} -DMAPIP-b complex (Emission monitored at 432 nm, due to the interfering of the DMAPIP-b emission at low mole fraction of [Fe³⁺], those points are not included in the plot).

Fig. S2. Normalized excitation spectra of (a) DMAPIP-b, λ_{em} = 406 nm and DMAPIP-b with 20 μ M of Fe³⁺, (b) λ_{em} = 380 nm, (c) λ_{em} = 560 nm.

Fig. S3. Absorption spectra of (a) DMAPIP-b, (b) DMAPIP-b with 200 μ M of Fe³⁺, (c) DMAPIP-b with 200 μ M of F⁻, (d) DMAPIP-b with 200 μ M of Fe³⁺ and F⁻.

Fig. S4. Emission spectra of (a) DMAPIP-b, (b) DMAPIP-b with 200 μ M of Fe³⁺, (c) DMAPIP-b with 200 μ M of F⁻, (d) DMAPIP-b with 200 μ M of Fe³⁺ and F⁻. $\lambda_{exc} = 280$ nm.

Fig. S5. Comparison of emission Spectra, (a) DMAPIP-b, (b) DMAPIP-b with 200 μ M of Fe³⁺, (c) DMAPIP-b with 200 μ M of Fe³⁺ and 200 μ M of F⁻. λ_{exc} = 345 nm.

References

- 1. J. Bourson, J. Pouget, B. Valeur, J. Phys. Chem., 1993, 97, 4552-4557.
- 2. M. Van de Weet, J. Fluoresc. 2010, 20, 625-629.