Supporting Information: An in solution assay for parallel interrogation of structure and affinity of small molecule-binding aptamers

Nadine R. Frost<sup>†</sup>, Maureen McKeague<sup>†</sup><sup>‡</sup>, Darren Falcioni<sup>†</sup>, Maria C. DeRosa<sup>†\*</sup>

†Chemistry Department, Carleton University 1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6

Present Address: Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA 94305

\*To whom all correspondence should be addressed: maria.derosa@carleton.ca

CONTENTS:

1) Variable temperature UV-Visible experimental melting temperature determination for  $FB_1$  39 minimers

2) Proof of concept study: correlation of DNase I digestion patterns to secondary structure predictions of DNA

- 3) DNase I assay and analysis of  $FB_1$  39 minimers to determine aptamer affinity
- 4) DNase I assay and analysis of additional FB<sub>1</sub> aptamers (*FB*<sub>1</sub> 14, *FB*<sub>1</sub> 16, *FB*<sub>1</sub> 23,
- $FB_1$  31,  $FB_1$  32) to determine aptamer affinity
- 5) PAGE gel of  $FB_1$  39 DNase I digestion for fragment size estimate
- 6) DNase I K<sub>d</sub> comparison of additional  $FB_1$  39 minimers ( $FB1_3$ 9cm and  $FB1_3$ 9m5)
- 7) DNase I assay and analysis of  $FB_1$  39 for control targets (OTA, FB<sub>2</sub>)
- 8) Magnetic bead binding assay, comparing affinity of *FB1\_39t3* and a control
- aptamer for Ochratoxin A (A08) to  $FB_1$ -modified magnetic beads
- 9) References

| FB1 aptamer | RNA structure fold | Melting studies      |                      |                      |                 |
|-------------|--------------------|----------------------|----------------------|----------------------|-----------------|
|             |                    | Ramp 1 (80°C - 20°C) | Ramp 2 (20°C - 80°C) | Ramp 3 (80°C - 20°C) | Average Tm (°C) |
| FB1_39      | p+f                | 40.0±0.39            | 43.1 ± 0.42          | 40.0 ± 0.40          | 41.0 ± 0.4      |
| FB1_39t3    | $\mathbf{x}$       | 16.0 ± 1.01          | 1.7 ± 4.92           | 22.1±1.15            | 13.3 ± 2.4      |
| FB1_39t5    | ()+à               | 42.5±0.29            | 44.8±0.34            | 41.4±0.31            | 42.9 ± 0.1      |
| FB1_39t3-5  | , <del>S</del>     | 22.4 ± 0.85          | 13.4 ± 2.41          | 21.4 ± 0.93          | 19.1 ± 1.1      |
| FB1_39m3    | $\phi \neq c$      | 39.95 ± 0.17         | 41.85±0.18           | N.D.                 | 40.9 ± 0.2      |
| FB1_39m5    | $\sim$             | 28.2 ± 0.90          | 22.9±1.49            | 28.4±0.77            | 27.7±4.6        |
| FB1_39cm    | $\rightarrow$      | 21.4±0.86            | 3.4 ± 7.17           | 21.9 ± 1.16          | 19.0 ± 6.6      |

(1) Variable temperature UV-Visible experimental melting temperature determination for  $FB_1$  39 minimers

**Figure S1.** Sequence, RNA Structure fold<sup>1</sup> and UV-Vis thermal denaturation melting studies ( $T_m$ ) for *FB*<sub>1</sub> 39 and minimers (*FB1\_39t3, FB1\_39t5, FB1\_39t3-5, FB1\_39m3, FB1\_39m5* and *FB1\_39cm*).  $T_m$  studies were monitored at 260 nm with three temperature ramps at 0.5°C / min. R1 80°C - 20°C; R2 20°C - 80°C; R3 80°C - 20°C with a 5 min hold between each ramp.

## (2) Proof of concept study: correlation of DNase I digestion patterns to secondary structure predictions of DNA

A proof-of-concept study was designed to examine the relationship between secondary structure and DNase I digestion fragment patterns. Three sequences with rationally designed hairpins were synthesized. The three sequences have varying patterns of structural complexity: 2-way junction, a 3-way junction, and a long hairpin bulge (Supplemental Figure 1). The secondary structure of the sequences were analyzed by RNA Structure to visualize the predicted motifs (Figure 1).<sup>1</sup> All sequences are labeled with 5'-fluorescein. After digestion by DNase I, the 5'fluorescein labeled fragments were separated by denaturing PAGE . As expected, each band (or cluster of bands) corresponds with a site of digestion cleavage at a region of stable secondary structure within the sequence. For the 2-way junction, four bands are present that represent digestion at each of the hairpins (1 and 2; 3 and 4), with 5'-labeled fragments originating from digestion cleaving at each side of the hairpins. The full-length sequence (4) could have a small amount of digestion from the 3' end. The 3-way junction shows three regions of digestion (2, 3, 4) as well as the full-length sequence (5), and very short 5' fragments (1). The long bulge hairpin shows multiple digestion bands as much of the structure is comprised of duplex DNA; bands 3, 4, and 5 represent digestion from the 3' end hairpins; bands 1 and 2 represent regions of digestion from the structure at the 5' end. These results support the concept that predominant DNase I digestion occurs at sites of stable duplex DNA. This supports the selective digestion at duplex DNA.

| Structure                | DNA sequence (5' – 3')                                                  | RNA Structure | DNase I digestion on denaturing PAGE |
|--------------------------|-------------------------------------------------------------------------|---------------|--------------------------------------|
| 2-way<br>junction        | FAAAAAAAACCCCCCCCCCAAAA<br>AAAAAAGGGGGGGGGAAAAAA<br>AAAAGGGGGAAAAACCCCC |               | 4 3 2 1                              |
| 3-way<br>junction        | FAAAAAGGGGGAAAAACCCCC<br>CCCCCCAAAAAAAAAAAGGG<br>GGTTTTTTTTTAAAAATTTTT  |               |                                      |
| Long<br>bulge<br>hairpin | FAAAACCCCAAGGGGAAAAG<br>GGGAACCCCAAAACCCCAAGGG<br>GAAAAGGGGAACCCCAAAA   |               |                                      |

**Figure S2.** Sequences designed with known secondary structure, shown with predicted structure (RNA structure), and separated fragments produced by DNase I digestion for 1 min at  $37^{\circ}$ C of 5'-fluorescein labeled aptamer separated by 19% denaturing PAGE. DNase I digestion regions (1 – 5) are assigned to putative digestion sites within the aptamer sequences based on preferential endonuclease activity of DNase I on duplex DNA. The full-length sequences are indicated by a green box outline.



(3) DNase I assay and analysis of  $FB_1$  39 minimers to determine aptamer affinity



**Figure S3.** Representative gel for DNase I assay of  $FB_1$  39 minimers (minimum of 3 replicates each) analyzed using a 19% denaturing polyacrylamide gel, FB<sub>1</sub> concentration increasing from 0 – 10 µM with a corresponding heat map of the DNase I assay. K<sub>d</sub>s were determined with GraphPad Prism non-linear regression one site specific binding. In the heat map, colour indicates K<sub>d</sub> range (Red <100 nM; Purple 100 nM – 1000 nM, Blue > 1000 nM). Intensity of colour indicates error associated with K<sub>d</sub> (solid colour corresponds to lower error; lighter colour with higher error). **A)** *FB1\_39t3*: band B (15.1 ± 11.5 nM), band C (6.5 ± 4.6 nM), band E (0.9 ± 0.8 nM), bands J-K (8.3 ± 3.2 nM); **B)** *FB1\_39t5*: band B (3.7 ± 2.8 nM), band C (2.8 ± 2.2 nM), bands D-E 2.0 ± 2.7 nM); **C)** *FB1\_39t3*-5: band B (7.1 ± 5.9 nM), bands C-D (7.6 ± 4.4 nM), bands E-F (2.5 ± 2.2 nM) ; **D)** *FB1\_39m3*: bands H-I (no binding), bands J-K (no binding). **E)** *FB1\_39m5*: band E (6.9 ± 4.6 nM), band G (no binding), bands J-K (no binding). **F)** *FB1\_39cm*: band D (no binding); band E (0.2 ± 0.2 nM); bands J-K (23.3 ± 16.8 nM).

(4) DNase I assay and analysis of additional  $FB_1$  aptamers ( $FB_1$  14,  $FB_1$  16,  $FB_1$  23,  $FB_1$  31,  $FB_1$  32)<sup>3</sup> to determine aptamer affinity

| DNA                |                                                            | Reported K <sub>d</sub> |
|--------------------|------------------------------------------------------------|-------------------------|
| aptamer            | Sequence (5'-3')                                           | (nM)                    |
| FB <sub>1</sub> 39 | FATACCAGCTTATTCAATTAATCGCATTACCTTATACCAGCTTATTCAATTACGTCTG | $100 \pm 30^3$          |
|                    | CACATACCAGCTTATTCAATTAGATAGTAAGTGCAATCT                    |                         |
| FB <sub>1</sub> 32 | FATACCAGCTTATTCAATTAATGTACGATGTGTGGGCAACATGAGTATGTCGTGTG   | $400 \pm 100^4$         |
|                    | ATATCTAGATGAGGTAGCGGTGGAGATAGTAAGTGCAATCT                  |                         |
| FB <sub>1</sub> 31 | FATACCAGCTTATTCAATTCGGGGACGTGTATACCAGCTTATTCAATTC          | $470 \pm 60^4$          |
|                    | ACAGTTATGTCCTATACCAGCTTATTCAATTAGATAGTAAGTGCAATCT          |                         |
| FB <sub>1</sub> 23 | FATACCAGCTTATTCAATTGCGGATGCGTAAATGACGATAAACATAGATGGGGTA    | $1000 \pm 20^4$         |
|                    | TATCGCGATGCGACAGGGTGTAGATAGTAAGTGCAATCT                    |                         |
| FB <sub>1</sub> 14 | FATACCAGCTTATTCAATTCTATACGGAGTGGATATCGATCTGTAACGTGAGTGA    | 920 ± 40 <sup>4</sup>   |
|                    | ATAATGTGATGCATAGTCGTGGAGATAGTAAGTGCAATCT                   |                         |
| FB <sub>1</sub> 16 | FATACCAGCTTATTCAATTCATCCAGTAACAAACACATAAGTAACGGCGATATGTC   | $200 \pm 100^4$         |
|                    | AAAGCGGTATCGGCTACAGATGAGATAGTAAGTGCAATCT                   |                         |







**Figure S4.** Representative gel for DNase I assay of FB<sub>1</sub> 14, 16, 23, 31 and 32 (minimum of 3 replicates each) separated on a 19% denaturing polyacrylamide gel, FB<sub>1</sub> concentration increasing from 0 – 10  $\mu$ M. The K<sub>d</sub>s were determined with GraphPad Prism non-linear regression one-site specific binding. RNA Structure predictions are shown, yellow star indicates 5' Fluorescein modification. **A)** *FB*<sub>1</sub> 14: bands A-B (698.6 ± 297.3 nM); bands C-D-E (25.9 ± 22.3 nM); bands H-I (3.2 ± 3.0 nM) **B)** *FB*<sub>1</sub> 23: bands A-B-C-D (174.1 ± 14.9 nM); bands H-I (17.2 ± 14.9 nM); band J (311.5 ± 257.7 nM) **C)** *FB*<sub>1</sub> 23: bands A-B-C-D (170.0 ± 94.8 nM); band G (3.1 ± 3.0 nM); bands H-I-J (89.9 ± 4.4 nM) **D)** *FB*<sub>1</sub> 31: band B (254.4 ± 161.2 nM); bands C-D (8.4 ± 6.7 nM); band G (5.7 ± 4.4 nM) **E)** *FB*<sub>1</sub> 32: band A (18.3 ± 13.5 nM); band B (7.8 ± 5.9 nM); bands C-D (5.4 ± 2.6 nM)

(5) PAGE gel of  $FB_1$  39 DNase I digestion for fragment size estimate



**Figure S5.** 19% PAGE gel of  $FB_1$  39 DNase I digestion to estimate size of digestion fragments. Lane 1: 5'-fluorescein labelled DNA ladder. Lane 2:  $FB_1$  39 DNase I digest with fragment size estimates of prominent bands calculated by Molecular Weight calculator, AlphaImager, AlphaInnotech.

(6) DNase I  $K_d$  comparison of additional FB<sub>1</sub> 39 minimers (FB1\_39cm and FB1\_39m5)

| Aptamer            | DNase I assay<br>(Band E) (nM) |
|--------------------|--------------------------------|
| FB <sub>1</sub> 39 | $2.8 \pm 2.4$                  |
| FB1_39t3           | $0.6 \pm 0.5$                  |
| FB1_39t5           | $0.5 \pm 0.4$                  |
| FB1_39t3-5         | $2.8 \pm 2.7$                  |
| FB1_39m3           | N.B                            |
| FB1_39m5           | 6.9 ± 4.6                      |
| FB1_39cm           | $0.2 \pm 0.2$                  |

**Figure S6.** Apparent  $K_d$  of additional  $FB_1$  39 minimers ( $FB1_39m5$  and  $FB1_39cm$ ) at Band E compared to other  $FB_1$  39 minimers studied.

(7) DNase I assay and analysis of  $FB_1$  39 for control targets (OTA,  $FB_2$ )



**Figure S7. A)** Binding isotherms generated from Band E of the DNase I digestion assay showing the  $K_d$  of  $FB_1$  39 with FB<sub>1</sub> and FB<sub>2</sub>, and **B)** Binding isotherms generated from Band E of the DNase I digestion assay showing the  $K_d$  of  $FB_1$  39 with FB<sub>1</sub> and OTA. Binding isotherms were generated using GraphPad Prism non-linear regression one-site specific binding.  $K_d$  of binding to FB<sub>2</sub> was 0.77 ± 0.65 nM; no binding observed to OTA.

(8) Magnetic bead binding assay, comparing affinity of FB1\_39t3 and a control aptamer for Ochratoxin A (A08)<sup>5</sup> to FB<sub>1</sub>-modified magnetic beads



**Figure S8**. Magnetic bead affinity assays for *FB1\_39t3* ( $K_d$  184 ± 43 nM) and A08 control aptamer (no binding).<sup>5</sup> Binding isotherms generated by GraphPad Prism non-linear regression one site specific binding.

(9) REFERENCES:

[1] a) S. Bellaousov, J.S. Reuter, M.G. Seetin, D.H. Mathews, *Nucleics Acids Research*, 2013, *41*, W471. b) J.S. Reuter, D.H. Mathews, *BMC Bioinformatics*, 2010, *11*, 1-9. c) D.H. Mathews, W.N. Moss, D.H. Turner, *Cold Spring Harb Perspect Biol*, 2010, *2*, 1-15.

[2] B.M. McGrath, G. and Walsh, CRC Press 2005 ISBN 978-0-8493-2714-8.

[3] M. McKeague, C.R Bradley, A. De Girolamo, A. Visconti, J.D. Miller, M.C. DeRosa, Int J Mol Sci, 2010, 11:4864-4881

[4] M. McKeague, PhD Thesis, Carleton University, 2012.

[5] M. McKeague, R. Velu, K. Hill, V. Bardoczy, T. Meszaros, M.C. DeRosa, *Toxins*, 2014, *6*, 2435-2452.