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Abstract: Here we report collision cross sections (CCS) of high-mannose N-glycans as [M+Na]*, [M+K]*, [M+H]*,
[M+CIT, [M+H2P0O4]- and [M-H] ions measured via drift tube (DT) ion mobility-mass spectrometry (IM-MS) in
helium and nitrogen gases. Further analysis using traveling wave (TW) IM-MS revealed the existence of distinct
conformers exclusive to [M-H] ions.



Experimental Details
N-glycan sample preparation

Synthetically derived N-glycans (Dextra, Reading UK) were diluted with HPLC grade water to a final
concentration of 150uM. 1ul from the stock solution was added to 8ul 1:1 MeOH/H,0 (HPLC grade) and 1l
100mM solution of either KCI, NH4H,PO,4, ammonium acetate, NH,Cl or 0.1% formic acid to promote adduct
formation. Porcine thyroglobulin, bovine RNAse B and chicken ovalbumin were purchased from Sigma
Chemical Co. Ltd. (Poole, Dorset, UK) and N-glycans were released chemically by hydrazinolysis and
subsequently re-N-acetylated. Sample solutions were stored at -20°C until IM-MS analysis.

DT IM-MS and absolute CCS measurements

Absolute collision cross sections (°TCCS) measurements were performed with a modified Synapt G1 HDMS
(Waters, Manchester, UK) hybrid quadrupole IM-MS instrument modified with a linear drift tube as previously
described?!. For each analysis 2ul of sample was ionized by nano-electrospray ionization (nano-ESI) from gold-
coated borosilicate glass capillaries made in-house?. Instrument setting for negative ion analysis were as
follows: capillary voltage, 0.8-1kV; sample cone, 150V; extraction cone, 10V; cone gas, 40L/h; trap collision
voltage, 10V; trap DC bias, 25V; IMS drift voltage, 50-150V; ion mobility cell pressure, 3.3 mbar (He), 1.2 mbar
(Ny). Instrument setting for positive ion analysis were as follows: capillary voltage, 1-1.5kV; sample cone, 80V;
extraction cone, 10V; cone gas, 40L/h; trap collision voltage, 10V; trap DC bias, 22V; IMS drift voltage, 50-
150V; ion mobility cell pressure, 3.3 mbar (He), 1.1 mbar(N,). Data was processed with MassLynx v4.1 and
Driftscope (Waters, Manchester, UK). Experimental arrival time distributions (ATDs) were fit to a Gaussian
distribution to determine the drift time. P"CCS were calculated from the slopes of the drift time versus
reciprocal drift voltage (50, 55, 60, 70, 80, 100, 125 and 150V) plots as previously described * 3. Briefly, the
velocity of ions through the IMS cell is proportionate to the mobility (K) and applied electric field (E) at
constant pressure (p) and temperature (T) (Equation 1).

v=KE (1)

The drift time (tp) required to traverse the IM cell of length L is proportional to the inverse mobility (1/K) and
the inverse field (1/E) (Equation 2). The intercept from a linear regression of drift time (tp) versus the inverse
drift voltage applied for each acquisition gives t; which represents the time ions spend from the end of the
IMS cell to the mass detector from which mobility (K) can be determined:
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CCS values were then calculated using the Mason-Schamp equation®:
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Where e is the ion charge, N is the drift gas number density, i is the reduced mass of the ion and drift gas, kzis

the Bolzmann constant and T is the temperature measured in the IMS cell.
TW IM-MS measurements

Traveling wave (TW) IM-MS measurements were performed on a Synapt G2Si instrument (Waters,
Manchester, UK). For each analysis 2ul of sample was ionized by nano-electrospray ionization (nano-ESI) from



gold-coated borosilicate glass capillaries made in-house?. Instrument setting for negative ion analysis were as
follows: capillary voltage, 0.8-1kV; sample cone, 100V; extraction cone, 25V; cone gas, 40L/h; source
temperature, 80°C; trap collision voltage, 4V; transfer collision voltage, 4-100V; trap DC bias, 45V; wave
velocity, 650 m/s; wave height, 40 V; trap gas flow, 2ml/min; IMS gas flow, 80 ml/min. Data was acquired and
processed with MassLynx v4.1 and Driftscope software (Waters, Manchester, UK). Arrival time distributions
(ATDs) were fit to a single or double Gaussian distribution prior to estimating experimental ™"CCSs. A dextran
calibration ladder with known PTCCS was for estimating N-glycan ™WCCS values as previously described? >.
Briefly, measured drift times (tp) were corrected for m/z dependent delay time from Equation 4 where c is an
empirically determined constant (c = 0.001 x EDC (enhanced duty cycle) delay coefficient).

t'y=tp,-cym/z (4)

Absolute dextran PTCCS were corrected for charge and reduced mass (Equation 5).
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A linear correlation plot of In(CCS’) versus In(dt’) (R2>0.99) gives two constants termed the fit-determined
constant A and the ‘exponential factor’ X from the equation:

InCCS =X xInt,+InA (6)

Experimental ATDs were converted to "WCCS values from Equation 5.



Supplementary Tables and Figures

Table S1. Estimated ™WCCS values of all investigated N-glycans.

Collision Cross Section (A2)

Glycan Negative lons Positive lons
M-H M+Cl M+H,PO, M+H M+Na M+K
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Figure S1: Arrival time distributions of synthetic high-
mannose N-glycans as [M+Cl]- and [M+H,PO,] ions.
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Figure S2: Arrival time distributions of thyroglobulin high-

mannose N-glycans as [M+Cl]- and [M+H,PQ,] ions.
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Figure S3: Arrival time distributions of RNase B high-
mannose N-glycans as [M+Cl]- and [M+H,PQ,] ions.
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Figure S4: Arrival time distributions of ovalbumin high-
mannose N-glycans as [M+Cl]- and [M+H,PQ,] ions.
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Figure S5: MS/MS spectra of Man5 and Man6 [M-H]" and [M+H,PO,] ions from
thyroglobulin. [M-H]- spectra were summed from peak 1 or peak 2. Fragmentation of
[M-H]- and [M+H,PO,] ions gave identical spectra and corresponds to the same
structures for both Man5 and Mané.
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