Electronic supplementary material

A novel substitution sensing for hydroquinone and catechol based on

Poly(3-aminophenylboronic acid)/MWCNTs modified electrode

Min Zhong, Yunlong Dai, Limei Fan, Xiaojing Lu, Xianwen Kan*

Method	Calibration	Detection	References
	range (mol/L)	limit (mol/L)	
A sensor based on as-grown and	5.0×10^{-6}	1.3×10^{-6}	[1]
nanograss array BDD electrode	$\sim 1.0 \times 10^{-4}$	1.5 ~ 10	[1]
A GCE modified with multi-walled	$2.0 imes 10^{-5}$	1 0 105	507
carbon nanotubes	$\sim 1.2 \times 10^{-3}$	1.0×10^{-5}	[2]
	$1.0 imes 10^{-6}$	4.0 10.7	[3]
A UNCS-RGO/GCE	$\sim 4.0 \times 10^{-4}$	4.0×10^{-7}	
A laccase biosensor based on AgNPs-	5.0 × 10 ⁻⁶		
CMC/cellulose composite nanofibrous	3.0×10^{-3}	1.6×10^{-6}	[4]
mats	$\sim 3.7 \times 10^{-5}$		
A screen-printed prussian blue	1.0×10^{-6}	4.2×10.7	F <i>E</i> 1
modified electrode	$\sim 9.0 \times 10^{-5}$	4.3 × 10 ′	[5]
A nanotubes/carbon paper composite	1.0×10^{-6}	• • • • • •	F (3)
electrochemical sensor	~1.0 × 10 ⁻⁴	2.9×10^{-7}	[6]
A BphC/GCE constructed by			
polyvinyl alcohol/SiO ₂ sol–gel	2.0×10^{-6}	4.3×10^{-7}	[7]
method	$\sim 8.0 \times 10^{-4}$	1.5 10	[,]
incuro d	5.0×10^{-7}		
MWCNTs-PDDA-GR/GCE	$\sim 4.0 \times 10^{-4}$	1.8×10^{-8}	[8]
A photoelectrochemical senser based	4.0 ^ 10		
on CdS quantum dots DNA and	1.0×10^{-8}		
on Cus quantum dots, DNA and	1.0×10^{-6}	4.9×10^{-9}	[9]
modified electrode	~1.0 × 10 °		
mourred electrode	4 0 · · 10 °		
pAPBA/MWCNTs/GCE	4.0×10^{-8}	4.3×10^{-9}	This work
	$\sim 1.7 \times 10^{-5}$		

Table S1 Comparison with other sensors for the determination of CC.

References

[1] M. Lv, M. Wei, F. Rong, Z.Z. Gu, C.Terashima, A. Fujishima, Electroanalysis, 2010, 22, 199.

[2] Z. Xu, X. Chen, X.H. Qu, S.J. Dong, Electroanalysis, 2004, 16, 684.

[3] Y.H. Huang, J.H. Chen, X. Sun, Z.B. Su, H.T. Xiang, S.R. Hu, W. Weng, H.X.

Guo, W.B. Wu, Y.S. He, Sens. Actuators. B, 2015, 212, 165.

[4] J.P. Fu, D.W. Li, G.H. Li, F.L.Huang, Q.F. Wei, J. Electroanal. Chem., 2015, 738, 92.

[5] M. Buleandra, A.A. Rabinca, C. Mihailciuc, Sens. Actuators. B, 2014, 203, 824.

[6] X. Yue, S. Pang, P. Han, Electrochem. Commun., 2013, 34, 356.

[7] Q. Zhang, Y. Qu, X. Zhang, Biosens. Bioelectron., 2011, 26, 4362.

[8] D. Song, J. Xia, F. Zhang, S. Bi, W.J. Xiang, Z.H. Wang, Sens. Actuators. B, 2015, 206, 111.

[9] Y. Liu, R. Wang, Y. Zhu, Sens. Actuators. B, 2015, 210, 355.

Fig. S1 (A) DPV curves of HQ recorded on pAPBA/MWCNTs/GCE with different concentration (a-i were 5.0×10^{-7} to 4.0×10^{-5} mol L⁻¹). Inset: The calibration curve for HQ; (B) DPV curves of CC recorded on pAPBA/MWCNTs/GCE with different concentration (a-f were 7.0×10^{-6} to 1.0×10^{-4} mol L⁻¹). Inset: The calibration curve for CC.

Fig. S2 (A) DPV curves of simultaneous detection of HQ and CC on pAPBA/MWCNTs/GCE with different concentration of HQ and CC (Concentrations were 5.0×10^{-7} to 1.5×10^{-5} mol L⁻¹). (B) The calibration curve for HQ and CC.

Samples	Added (µM)	Founded* (µM)	Recovery (%)
Tap Water	0.5	0.475	95.0
	5	5.18	103.6
	10	10.2	102.0
Jinghu Lake Water	0.5	0.522	104.0
	5	5.26	105.3
	10	9.85	98.5
Wenjin Lake Water	0.5	0.476	95.1
	5	5.39	107.9
	10	10.1	101.0
	0.5	0.515	103.0
Changjiang River Water	5	5.41	108.2
	10	9.78	97.8
Sanitary Wastewater	0.5	0.490	98.0
	5	4.95	99.0
	10	9.91	99.1

Table S2 Application of the sensor to competitively determine CC in five kinds of real water samples spiked with different amounts of CC.

* Average value of three determination