Electronic Supplementary Material (ESI) for Analyst. This journal is © The Royal Society of Chemistry 2015

Supporting Information Available

Ratiometric fluorescent detection of silver ions using thioflavin T-based organic/inorganic hybrid suparparticles

Yan-Yun Li,^a Min Zhang,*^a Ling-Fei Lu,^a Anwei Zhu,^a Fei Xia,^a Tianshu Zhou,^b Guoyue Shi*^a

^a School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China. E-mail: <u>mzhang@chem.ecnu.edu.cn</u>, <u>gyshi@chem.ecnu.edu.cn</u>; Fax: +86-21-54340043; Tel: +86-21-54340042

^b School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R.

China

Figure S1. Energy-dispersive X-ray (EDX) spectra of AgI NPs.

Figure S2. XRD patterns of ThT@AgISPs and AgI NPs.

Figure S3. The fluorescence emission spectra are shown for ThT with varied concentrations.

Figure S4. 8 repetitive measurements with 4 μ M Ag⁺ was used for investigating the precision of ThT–I⁻ solution response

Fluorescent probes	LOD (nM)	Linear range (µM)	Ref.
Tetraphenylethylene-based sensor	874	0-80	1
Tricarbocyanine	200	0.5-20	2
Phenanthro[9,10-d] imidazole derivative	101	0-0.9	3
Quinoxaline-containing conjugated polymer	64	0.17-1	4
FAM-ssDNA/graphene oxide	50	0.1-10	5
DSAI/cytosine-rich DNA	155	0-4	6
Carbon nanodots	320	0-90	7
Thioflavin T-based organic/inorganic hybrid suparparticles	50	0.1-10	This work

Table S1. The analytical performance of various Ag⁺ sensors.

Reference:

- (1) Y. Li, H. J. Yu, G. Shao and F. Gan, J. Photochem. Photobiol. A: Chem., 2015, 301, 14-19.
- (2) C. Y. Li, X. F. Kong, Y. F. Li, C. X. Zou, D. Liu and W. G. Zhu, Dyes Pigm., 2013, 99, 903-907.
- (3) B. Zhao, Y. Xu, Y. Fang, L. Y. Wang and Q. G. Deng, Tetrahedron Lett., 2015, 56, 2460-2465.
- (4) W. Shi, Y. L. Lei, Y. H. Hui, H. Y. Mi, F. D. Ma, Y. Tian and Z. F. Xie, New J. Chem., 2014, 38, 4730-4735.
- (5) X. Chen, Y. R. Chen, X. D. Zhou and J. M. Hu, Talanta, 2013, 107, 277-583.
- (6) K. Ma, H. Wang, X. Li, B. Xu and W. J. Tian, Anal. Bioanal. Chem., 2015, 407, 2625-2630.
- (7) X. H. Gao, Y. Z. Lu, R. Z. Zhang, S. J. He, J. Ju, M. M. Liu, L. Li and W. Chen, *J. Mater. Chem. C.*, 2015, **3**, 2302-2309.

Sample	Added/µM	Found/µM	Recovery (%)	RSD (%)
Tap water 1	0	ND	-	-
Tap water 2	2	2.19	109.71	4.77
Tap water 3	4	4.21	105.35	2.46
Tap water 4	6	6.31	105.21	5.5

Table S2. Detection of Ag^+ in water samples using the proposed method (n = 3).