Electronic Supplementary Material (ESI) for Analyst. This journal is © The Royal Society of Chemistry 2015 ## Wen Ren, Zhongwu Zhou and Joseph M. K. Irudayaraj* Fig. S1 Average background spectra of glass container used for SERS measurement. Fig. S2 SERS intensity of the peak at 1095 cm⁻¹ [mean \pm SD, n = 3] from GNPs modified with 4-MPy after 90 min of addition of serial concentrations of HCl or NaCl (A), and SERS intensity of the peak at 1095 cm⁻¹ [mean \pm SD, n = 3] from Au/TiO₂ core-shell nanocomposites after 90 min (B) and 24 h (C) of addition of serial concentrations of HCl or NaCl. The results from GNPs modified with 4-MPy show that hydrions will increase the SERS intensity while chloridions less than 10⁻⁴ M will not significantly influence the SERS intensity. Meanwhile the results from the samples of Au/TiO₂ core-shell nanocomposites with added HCl exhibit that the added HCl will not affect the SERS of the nanocomposites, suggesting that only the HCl generated in the TiO₂ shell will improve the SERS intensity. Fig. S3. SERS intensity change of the peak at 1095 cm⁻¹ [mean \pm SD, n = 3] in the samples with 10⁻⁴ and 10⁻⁶ M of TCE for different duration of enrichment. Fig. S4 Calibration plot in response to serial concentration TCE based on SERS intensity of the peak at 1095, 1055 and 1013 cm⁻¹. Table S1. LOD and R2 based on the peaks at 1095, 1055 and 1013 cm⁻¹ | Peak position | $LOD/\mu M$ | LOD/ppb | \mathbb{R}^2 | |-----------------------|-------------|---------|----------------| | 1095 cm ⁻¹ | 0.038 | 5.0 | 0.993 | | 1055 cm ⁻¹ | 0.068 | 8.9 | 0.968 | | 1013 cm ⁻¹ | 0.060 | 7.9 | 0.985 | Fig. S5. SERS intensity of the peak at 1095 cm^{-1} [mean \pm SD, n = 3] from unpurified water samples from river purposefully contaminated with TCE. The dust and other suspended solid in unpurified river water are believed to influence the TCE absorption of the TiO₂ shell and thus the detection of TCE less than 10^{-6} M . Blank TCE Chloroform Chloroform 10-6 M Chloroform 10^{-6} M Chloroform 10^{-6} M 10^{-6} M 10^{-6} M TCE, 10^{-6} , 10^{-4} , 10^{-2} M chloroform.