Electronic Supplementary Material (ESI) for Analyst. This journal is © The Royal Society of Chemistry 2015

Wen Ren, Zhongwu Zhou and Joseph M. K. Irudayaraj*

Fig. S1 Average background spectra of glass container used for SERS measurement.

Fig. S2 SERS intensity of the peak at 1095 cm⁻¹ [mean \pm SD, n = 3] from GNPs modified with 4-MPy after 90 min of addition of serial concentrations of HCl or NaCl (A), and SERS intensity of the peak at 1095 cm⁻¹ [mean \pm SD, n = 3] from Au/TiO₂ core-shell nanocomposites after 90 min (B) and 24 h (C) of addition of serial concentrations of HCl or NaCl. The results from GNPs modified with 4-MPy show that hydrions will increase the SERS intensity while chloridions less than 10⁻⁴ M will not significantly influence the SERS intensity. Meanwhile the results from the samples of Au/TiO₂ core-shell nanocomposites with added HCl exhibit that the added HCl will not affect the SERS of the nanocomposites, suggesting that only the HCl generated in the TiO₂ shell will improve the SERS intensity.

Fig. S3. SERS intensity change of the peak at 1095 cm⁻¹ [mean \pm SD, n = 3] in the samples with 10⁻⁴ and 10⁻⁶ M of TCE for different duration of enrichment.

Fig. S4 Calibration plot in response to serial concentration TCE based on SERS intensity of the peak at 1095, 1055 and 1013 cm⁻¹.

Table S1. LOD and R2 based on the peaks at 1095, 1055 and 1013 cm⁻¹

Peak position	$LOD/\mu M$	LOD/ppb	\mathbb{R}^2
1095 cm ⁻¹	0.038	5.0	0.993
1055 cm ⁻¹	0.068	8.9	0.968
1013 cm ⁻¹	0.060	7.9	0.985

Fig. S5. SERS intensity of the peak at 1095 cm^{-1} [mean \pm SD, n = 3] from unpurified water samples from river purposefully contaminated with TCE. The dust and other suspended solid in unpurified river water are believed to influence the TCE absorption of the TiO₂ shell and thus the detection of TCE less than 10^{-6} M .

Blank TCE Chloroform Chloroform 10-6 M Chloroform 10^{-6} M Chloroform 10^{-6} M 10^{-6} M 10^{-6} M TCE, 10^{-6} , 10^{-4} , 10^{-2} M chloroform.