Supporting Information

Toward Selective, Sensitive, and Discriminative Detection of Hg²⁺ and Cd²⁺ via pH-Modulated Surface Chemistry of Glutathione-Capped Gold Nanoclusters

Pengcheng Huang,* Sha Li, Nan Gao, Fangying Wu*

College of Chemistry, Nanchang University, Nanchang 330031, China

*Corresponding Author. E-mails: Pengcheng Huang, pchuang@ncu.edu.cn; Fangying Wu, fywu@ncu.edu.cn.

Figure S1. UV-vis absorption spectra (A) and the change of fluorescence intensity (B) of GSH-Au NCs under different pH values.

Figure S2. Fluorescence responses of GSH-Au NCs (A) at pH 5 in the presence of Hg²⁺ with the various concentrations from 0 to 1.65 μ M and, (B) at pH 11 in the presence of Cd²⁺ with the various concentrations from 0 to 1.4 μ M, respectively.

Figure S3. UV-vis absorption spectra of the GSH-Au NCs upon the addition of different concentrations of Hg^{2+} at pH 5 (A) and 11 (B), or Cd^{2+} at pH 7 (C) and 11 (D), respectively.

Figure S4. UV-vis absorption spectrum of GSH.

Figure S5. LS spectra of GSH-Au NCs at pH 5 (A) and 11 (B), respectively, upon the addition of different concentrations of Hg²⁺.

Figure S6. DLS measurements for GSH-Au NCs at pH 5 in the absence (A) and presence (B) of Hg^{2+} .

Figure S7. FT-IR spectra of GSH-Au NCs at pH 5 in the absence (a) and presence (b) of Hg^{2+} , and at pH 11 in the absence (c) and presence (d) of Hg^{2+} , respectively. Y axis is transmittance.

Figure S8. ESI-MS data for GSH-Au NCs at pH 5 in the absence (A) and presence (B) of Hg²⁺, respectively.

Figure S9. Full-scale XPS spectra of GSH-Au NCs at pH 7 (A, B) and 11 (C, D), respectively, in the absence (left panel) and presence (right panel) of Cd²⁺. Inset in B and D: Cd 3d high-resolution XPS spectra.

Figure S10. FT-IR spectra of (a) GSH, GSH-Au NCs at pH 7 in the absence (b) and presence (d) of Cd^{2+} , and at pH 11 in the absence (c) and presence (e) of Cd^{2+} , respectively. Y axis is transmittance.

For GSH, peaks at 3126 and 3028, 1660 and 1600, and 1538 cm⁻¹ were assigned to the N–H (NH₃⁺) stretching band (vN–H), the C=O stretching band of the carboxylic group (vC=O), and the strong absorption peak of N–H deformation of the amide bond (δ N–H), respectively.^{27,28} Under different pH values (e. g., 7 and 11), GSH has different ionization forms due to the differences of the deprotonation ability of the functional groups mentioned above. For the GSH-Au NCs at pH 7, the peaks of the carboxylic groups shifted to 1643 and 1603 cm⁻¹, and the shape became relatively broad. After the addition of Cd²⁺, these peaks shifted slightly, indicating in this case, very weak interaction between GSH and Cd²⁺. For GSH-Au NCs at pH 11, before and after the addition of Cd²⁺, the peaks of the carboxylic groups shifted as those for GSH-Au NCs at pH 7. However, the peak corresponding to the amide bond became very weak and almost disappeared after adding Cd²⁺. The similar change also happened for the N–H (NH₃⁺) stretching band (vN–H). These results suggest that GSH could strongly coordinate to Cd²⁺ at high pH.

Figure S11. ESI-MS data for GSH-Au NCs at pH 11 in the absence (A) and presence (B) of Cd²⁺, respectively.

Table S1. QYs and Zeta Potentials of GSH-Au NCs at pH 7 and 11 in the Absence and Presence of Cd²⁺

Sample	QY(%)	Zeta potential (mV)		
GSH-Au NCs (pH 7)	0.22	-9.78		
GSH-Au NCs (pH 7)+Cd ²⁺	0.24	-9.26		
GSH-Au NCs (pH 11)	0.15	-40.90		
GSH-Au NCs (pH 11)+Cd ²⁺	0.24	-32.87		

Table S2. Binding Energies Corresponding to the Deconvoluted Peaks of C 1s, O 1s, and N1s of GSH-Au NCs at pH 11 in the Absence and Presence of Cd²⁺

Sample	BE ^a C1s (eV)		BE O1s (eV)		BE N1s (eV)			
	C–C	С–О	С=О	O=C-O*b	°*O=C–O	CO–NH ^d	°N–H	
GSH-Au NCs	284.74	285.64	288.00	532.16	530.86	399.59	401.07	
GSH-Au NCs +Cd ²⁺	284.63	285.73	287.76	532.42	530.87	399.38	400.66	
^a Binding energy. ^b Hydroxyl O in the carboxylic group. ^c Carbonyl O in the carboxylic group.								

^dAmidic N in the peptide linkage between the cysteinyl and glycyl residuals. ^eAmino N.

Scheme S1. Proposed Structures of Hg-GSH Complexes at pH 5 (A) and 11 (B)

Scheme S2. Proposed Structures of Cd-GSH Complexes at pH 7 (A) and 11 (B) on Au Surface

