Supporting Information

Exploring Silver Ionic Liquids for Reaction-Based Gas Sensing on

Quartz Crystal Microbalance[†]

Hsin-Yi Li,‡ Tzu-Hsuan Hsu,‡ Chien-Yuan Chen, Ming-Chung Tseng and Yen-Ho

Chu*

Department of Chemistry and Biochemistry, National Chung Cheng University

168 University Road, Chiayi 62102, Taiwan, ROC

[‡]Both authors contributed equally to this work.

*Corresponding author. Tel + 886 5 2720411 ext. 66408; fax + 886 5 2721040; e-mail:

cheyhc@ccu.edu.tw

Fig. S1 Synthesis of 1,2-bis(2-aminooxyethoxy)ethane used as the ligand for synthesizing silver ionic liquid **SIL 4**.

Fig. S2 Chemoselective detection of formaldehyde gas (100 ppb) by a multi-channel QCM thin-coated with SIL 1, SIL 2 and SIL 4. The QCM sensorgrams with SIL 1, SIL 2 and SIL 4 for formaldehyde gas were vertically shifted (50 Hz in between) for clarity. Nitrogen was used as the carrier gas with a flow rate of 3 mL/min, and gaseous samples were injected at 100 s. The resonance frequency drop, ΔF , in Hz is the QCM response on the quartz chip surface.

Fig. S3 Kinetic measurements of imine forming reactions of amine ligands (0.50 M each) of **SIL 1** (1,2-bis(2-aminoethoxy)ethane, black circle \bullet) and **SIL 4** (1,2-bis(2-aminooxyethoxy)ethane, red circle \bullet) with acetone (1.0 M) in CDCl₃ solvent at ambient temperature. Inset: details of early conversions of the reactions (0-140 min). The progress of formation reactions of the imine adducts could be readily monitored at the methylene protons on 1,2-bis(2-aminoethoxy)ethane (δ 3.52 ppm for CH₂NH₂) and 1,2-bis(2-aminooxyethoxy)ethane (δ 3.83 ppm for CH₂ONH₂) and corresponding imine adducts (δ 3.74 ppm for for CH₂N=C; δ 4.17 ppm for for CH₂ON=C) by ¹H NMR.

Fig. S4 ¹H NMR analysis of the formation of oxime adduct upon silver ionic liquid **SIL 4** reaction with acetone. The measurement was carried out in CD₂Cl₂ solvent at ambient temperature.

Fig. S5 Chemoselective detection of formic acid gas (100 ppb) by a multi-channel QCM thin-coated with SIL 1, SIL 2 and SIL 4. The QCM sensorgrams with SIL 1, SIL 2 and SIL 4 for formic acid gas were vertically shifted (50 Hz in between) for clarity. Nitrogen was used as the carrier gas with a flow rate of 3 mL/min, and gaseous samples were injected at 100 s. The resonance frequency drop, ΔF , in Hz is the QCM response on the quartz chip surface.

Synthesis of 1,2-bis(2-aminooxyethoxy)ethane as SIL 4 ligand

To a precooled solution of triethylene glycol (3.0 g, 19.9 mmol) and potassium hydroxide (9.0 g, 160 mmol) in dichloromethane (100 mL) was added slowly neat *p*-toluenesulfonyl chloride (7.6 g, 40 mmol). The resulting solution was stirred at ambient temperature for 8 h and, after the tosylation reaction was completed, washed sequentially with citric acid (10 wt%, 15 mL), sodium bicarbonate (10 wt%, 15 mL), brine (15 mL) and then dried over Na₂SO₄. After filtration, the solvent was removed under reduced pressure to afford high purity triethylene glycol di-*p*-tosylate (8.11 g, 88% yield) as white solid.

The obtained triethylene glycol di-*p*-tosylate (1.0 g, 2.18 mmol) was dissolved in DMF (20 mL), and then *N*-hydroxyphthalimide (711 mg, 4.36 mmol) and DBU (0.66 mL, 4.36 mmol) were added. The substitution reaction was carried out at 80 °C for 6 h. After completion of reaction, DMF solvent was removed *in vacuo*, ethyl acetate solvent was added, and the resulting organic phase was washed with sodium bicarbonate (10 wt%), brine and finally dried over Na₂SO₄. After filtration and solvent evaporation under reduced pressure, the crude product mixture was purified by flash column chromatography to afford the desired 1,8-diphthalimidooxy-3,6-dioxaoctane (743.2 mg, 72% yield) as white solid.

To a solution of 1,8-diphthalimidooxy-3,6-dioxaoctane (743 mg, 1.76 mmol) in dichloromethane (3 mL) was added hydrazine monohydrate (1.3 mL, 17.6 mmol). The deprotection reaction was readily carried out at room temperature for 1 h. After filtering off the precipitate (2,3-dihydrophthalazine-1,4-dione) and removing the dichloromethane solvent, a yellow viscous liquid was resulted. Diethyl ether solvent was added to this viscous liquid to filter off residual 2,3-dihydrophthalazine-1,4-dione. The ether solvent was evaporated off under reduced pressure. High vacuum was then applied to remove residual hydrazine, if any, to finally afford the desired yellow liquid product, 1,2-bis(2-aminooxyethoxy)ethane, with high isolated yield (295 mg, 81%). Yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 3.65-3.77 (m, NOCCH₂, 4H), 3.67 (s, COCH₂, 4H), 3.82-3.92 (m, NOCH₂, 4H), 5.29-5.79 (bs, NH₂, 4H); ¹³C NMR (100 MHz, CD₃OD) δ 70.6, 71.4, 75.8.

Synthesis of silver ionic liquid SIL 1

To a precooled 1,2-bis(aminoethoxy)ethane (352.3 mg, 2.38 mmol) in 4-mL reaction vessel was delivered slowly by a syringe pump a solution of silver nitrate (201.7 mg, 1.19 mmol) in deionized water (250 μ L) for a time period of 2 h. The reaction mixture was kept in dark to avoid light exposure and stirred at 4 °C for 2 h and subsequently at room temperature for another 1 h to afford a solution containing silver ionic liquid

nitrate salt.

To the solution of silver ionic liquid nitrate salt was added a solution of lithium bistrifluoromethanesulfonimide (377.7 mg, 1.32 mmol) in water (250 μ L). This metathesis reaction was allowed to proceed for 2 h at room temperature. The formation of two phases was observed usually within first 30 min. The resulting solution was then added dichloromethane (750 μ L) for extraction to afford the ionic liquid product. This organic phase was further washed three times with deionized water (500 μ L each time) to remove any unreactive water miscible diamine ligand and silver nitrate residue. After removal of the solvent under reduced pressure, the desired **SIL 1** product was obtained (537.2 mg, 66% yield) as light yellow liquid.

Light yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 2.57 (s, NH₂, 8H), 3.06 (t, *J* = 4.6 Hz, NCH₂, 8H) δ 3.58 (t, *J* = 4.6 Hz, OCH₂CN, 8H) δ 3.66 (s, COCH₂, 8H); ¹³C NMR (100 MHz, CDCl₃) δ 42.3, 69.5, 69.6, 119.7 (q, *J*_{CF} = 319 Hz, CF₃); ESI-HRMS *m/z* [M]⁺ calcd for C₁₂H₃₂N₄O₄Ag 403.1474, found 403.1470.

Synthesis of silver ionic liquid SIL 2

To a precooled 2-methoxyethylamine (178.1 mg, 2.37 mmol) in 4-mL reaction vessel was added slowly a solution of silver nitrate (200.2 mg, 1.18 mmol) in deionized

water (250 μ L). The reaction mixture was kept in dark to avoid light exposure and stirred at 4 °C for 2 h and subsequently at room temperature for another 1 h to afford a solution containing silver ionic liquid nitrate salt.

To the solution of silver ionic liquid nitrate salt was added a solution of lithium bistrifluoromethanesulfonimide (372.4 mg, 1.30 mmol) in water (250 μ L). Since two phases was formed almost instantaneously, this metathesis reaction was vigorously stirred for 6 h at room temperature. The resulting solution was then added dichloromethane (750 μ L) for extraction to afford the ionic liquid product. This organic phase was further washed three times with deionized water (500 μ L each time) to remove any unreactive water miscible amine ligand and silver nitrate residue. After removal of the solvent under reduced pressure, the desired **SIL 2** product was obtained (598.6 mg, 94% yield) as colorless liquid.

Colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 2.53-2.98 (bs, NH₂, 4H), 3.05 (t, J = 4.8 Hz, CH₂N, 4H), 3.39 (s, CH₃O, 6H), 3.50 (t, J = 4.8 Hz, OCH₂, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 43.5, 58.9, 72.1, 119.7 (q, $J_{CF} = 319$ Hz, CF₃); ESI-HRMS m/z [M]⁺ calcd for C₆H₁₈N₂O₂Ag 257.0419, found 257.0421.

Synthesis of silver ionic liquid SIL 4

To a precooled 1,2-bis(2-aminooxyethoxy)ethane (215.8 mg, 1.20 mmol) in 4-mL reaction vessel was delivered slowly by a syringe pump a solution of silver nitrate (100.7 mg, 0.59 mmol) in deionized water (125 μ L) for a time period of 2 h. The reaction mixture was kept in dark to avoid light exposure and stirred at 4 °C for 2 h and subsequently at room temperature for another 1 h to afford a solution containing silver ionic liquid nitrate salt.

To the solution of silver ionic liquid nitrate salt was added a solution of lithium bistrifluoromethanesulfonimide (187.1 mg, 0.65 mmol) in water (125 μ L). This metathesis reaction was allowed to proceed for 2 h at room temperature. The formation of two phases was observed usually within first 30 min. The resulting solution was then added dichloromethane (750 μ L) for extraction to afford the ionic liquid product. This organic phase was further washed three times with deionized water (500 μ L each time) to remove any unreactive water miscible diamine ligand and silver nitrate residue. After removal of the solvent under reduced pressure, the desired **SIL 4** product was obtained (346.3 mg, 78% yield) as bright yellow liquid.

¹H NMR (400 MHz, CD₂Cl₂) δ 3.66 (s, COCH₂, 8H), 3.73 (t, *J* = 4.0 Hz, NOCCH₂, 8H), 3.96 (t, *J* = 4.0 Hz, NOCH₂, 8H), 6.11-6.89 (bs, NH₂, 8H); ¹³C NMR (100 MHz, CD₂Cl₂) δ 69.6, 70.4, 75.5, 119.4 (q, *J*_{CF} = 319 Hz, CF₃); ESI-HRMS *m*/*z* [M]⁺ calcd

for C₁₂H₃₂AgN₄O₈467.1271, found 467.1273.

QCM measurements

A 9 MHz QCM prototype device used in this work was composed of an outer metal chassis of ADS (affinity detection system) (ANT Technology Co., Taipei, Taiwan; http://www.anttech.com.tw/) and a QCM SB01B Analyzer core unit (Smart Biotechnology, Taipei, Taiwan). This QCM system was operated at room temperature and using nitrogen as carrier gas. The flow rate of the carrier gas was controlled by a commercial flow meter (Supelco Inc.). Organic vapors were obtained by gasifying the chemicals in the sealed glass container (1.25 L). The QCM system employed commercially available 9-MHz AT-cut quartz chips (ANT Technology Co., Taipei, Taiwan) deposited with gold electrodes (area 11 mm²) on both sides. The gold electrodes on chips were cleaned with HCl (1 N) for 5 min, water for 5 min, and NaOH (5 N) for 5 min twice to remove organic absorbent impurities. Finally, quartz chips were rinsed with methanol thoroughly and dried.

The SIL coating solutions were prepared by dissolving silver ionic liquids in methanol with a volume ratio of 1:300. The freshly prepared coating solutions (1 μ L) were carefully pipetted onto the cleaned bare gold electrodes, at the center of quartz chip.

The SIL coated chips were placed in a heating oven (110 °C) for 30 sec to remove residual methanol. The freshly prepared sensor chips were then mounted inside the gas flow chamber and used nitrogen as carrier gas at a flow rate of 3.0 mL/min. Until a stable baseline was obtained, targeted aldehyde or ketone gases were injected into the chamber.

Page 1			13-Jan-2015 11:33:06 1: TOF MS ES+ 6.42e+002			⊤ m/z	470				
P			13-Jai 11 0F Mi 6.42	હાર્સ્ટ		9479	465 4				
	. *		12			(O)					
, °,	10	atar A gara		$\sum_{i=1}^{n} e_i$.0560	5 460			·	, <u> </u>
uTf ₂		,				453	455				
	, " ——,					447.1880	450				
N	5					447.	445	dana ay	r v		
ΗN,							440				
$\sim^{\rm NH_2}$ [$\rm NTf_2$]						895	435				
6							430			4	2
<	L -					E	425				
~	SIL						420 4			- - -	
\rangle					CRI CA	201				A AG	
						545	405 410 415			04	
H ₂ N	, ¹² ,		a di senti Anno anto		, ² , ² ,	406.1545	410			N4	
1			×.	403.1470	1 - 1- 7		405		ula	C12 H32' N4	
Ag		۰ بن ۲		40		5	400		Lorm	212	
-	• • •	2 1 get 1 2*				386.1281 390.9885	390 395		i-FIT (Norm) Formula	J	
£		(s	KE267			81 39	390		ION)		
	, ¹	mas	Ť, P			86.12	385		FIT		i in States i States States i States i Stat
	*	each				- 1 A	380		ન	0.0	
		is for				367.1092 372.2407	375	3.			
		atche		- 4 		37	370 3		i-FIT	23.3	
		picm				7.109		1	न	23	
		isoto				36	0 365	0.0	- 3	S	
	DBE: min = -1.5, max = 1000.0 used for i-FIT = 2	best		5 P		8	360	1000.	DBE	-1.5	
	10	to 50				355.0340	355				
	max	dn) +					350	10.0	MAA	1.2	
	-1.5.	limits Ag: 0-					340 345	7	Щ	*	
ť	in = -	is vithin 4 /				339.2975	340	0	đ	-0.5	
tepo	E: m d for	ults v 0:4				336	335	5.0	mDa	Ŷ	
Elemental Composition Report	_	Monoisotopic Mass, Even Electron lons 7 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-1000 H: 0-1000 N: 4-4 O: 4-4 Ag: 0-1	1 0113_1 59 (2.623) Cm (59-3x10.000)	5. F. 1		328.9281	330		10		
ositi	M / Dff Dff eaks	wen E N:	9-3x1			328.	325		Calc. Mass	175	
dm	Anal 0 PP ion: (uated 1000	Cm (5		(a)		320 3		lc.	3.14	an an Artiga Maria. An taonach
ပိ	= 10. edict isoto	c Ma: evalt sed: H: 0-	623) (1	72	0.00		Ca	40	
enta	Single Mass Analysis Tolerance = 10.0 PPM / Element prediction: Off Number of isotope peaks	Monoisotopic Ma 7 formula(e) eval Elements Used: C: 0-1000 H: 0.	59 (2.			309.8572	310 315		- 31	403.1470 403.1475	
eme	ingl olera eme	Monoisoto 7 formula(Elements I C: 0-1000	13_1	60	- %		31	Maximum: Maximum:	Mass	33.1	
Ū	0 F U Z	Ž⊼ŪÖ	- 10	,)≓ ~,				N N	Ma	40	
		2				5					

Page 1		13-Jan-2015 11:38:54 1: TOF MS ES+	7.81e+004		345.1023 349.7451 m/z	350 360				
5		н 			345.1023	340 3				
_осн ₃)_2] [итf ₂] - 2					315.0649 319.9753	320 330		4 3 ⁶ 9		
SIL 2			 		297.0824 315	e			32	
Ag▲			1 259.0420		259.1003 271.0598	270 280		la	H18 N2 O2 Ag	
	ss)	KE267	257.0421		255.0283	0 250 260		i-FIT (Norm) Formula	9 8	
	hes for each ma		۰ روبه ۱۹ ۱۹		220.9849225.0052229.0415	0 230 240			0.0	
	Monoisotopic Mass, Even Electron lons 5 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-1000 H: 0-1000 N: 2-2 O: 2-2 Ag: 0-1	ج ^ر :			220.98492	210 220		i-FIT	40.4	je-
0.000.0					188.9545 205.1513		-1.5 1000.0	DBE	1.5	
n Keport DBE: min = -1.5, max = 1000.0 used for I-FIT = 2					188.9545	180 190	10.0	MAA	8.0	
Keport BE: min = ed for i-Fl	tron lons esults within limits O: 2-2 Ag: 0-1				161.1256	170	5.0	mDa	0.2	
	Monoisotopic Mass, Even Electron Ions 5 formula(e) evaluated with 1 results with Elements Used: C: 0-1000 H: 0-1000 N: 2-2 O: 2-2	(9)			151.1404	0 150 160		Calc. Mass	257.0419	
Elemental Compositions Single Mass Analysis Tolerance = 10.0 PPM // Element prediction: Off Number of isotope peaks	Monoisotopic Ma 5 formula(e) eval Elements Used: C: 0-1000 H: 0-	2 0113_2 17 (0.768)	ê	%	132.0982	130 140	Minimum: Maximum:	Mass	257.0421	v

