Electronic Supporting Information for:

Considering the chemical energy requirements of the tri-*n*-propylamine co-reactant pathways for the judicious design of new electrogenerated chemiluminescence detection systems

Emily Kerr, Egan H. Doeven, David J.D. Wilson, Conor F. Hogan, and Paul S. Francis*

Complex	$E_{\rm ox}$ / V (vs Fc ^{0/+})	$E_{\rm red}$ / V (vs Fc ^{0/+})	λ_{max} / nm
[Ru(bpy) ₃] ²⁺	0.89	-1.75	620
[lr(ppy) ₂ (phen)] ⁺	0.77 ^a	-1.85 ^a	606
[lr(ppy) ₃]	0.33	-2.67	530
[lr(df-ppy) ₃]	0.68	-2.53	492
[lr(df-ppy) ₂ (ptb)] ⁺	1.17	-2.14	455
[lr(pmi) ₃]	0.22	b	384
[lr(pq) ₂ (tmd)]	0.53 ^a	-2.01 ^a	615
[lr(pq) ₂ (acac)]	0.61 ^a	-2.05 ^a	609

Table S1. Data for Figures 1-6: metal complexes in acetonitrile solution.^{1, 2}

^{*a*}Reported in original work¹ in V *vs* SCE and referenced to Fc^{0/+} using a conversion factor of -0.38 V.³ ^{*b*}Beyond the potential window of the solvent.

	Table S2.	Data for	Figure 7	7: metal	complexes	in	aqueous	solution	.4
--	-----------	----------	----------	----------	-----------	----	---------	----------	----

Complex	E _{ox} / V	E _{red} / V	λ _{max} / nm
	(vs Ag/AgCl)	(vs Ag/AgCl)	
[Ir(df-ppy)₂(pt-PEG)]⁺	1.43	-1.69	456
[Ir(df-ppy-SO ₃) ₂ (ptb)] ⁻	1.47	-1.69	462

References

- 1. J. I. Kim, I.-S. Shin, H. Kim and J.-K. Lee, J. Am. Chem. Soc., 2005, **127**, 1614-1615.
- G. J. Barbante, E. H. Doeven, E. Kerr, T. U. Connell, P. S. Donnelly, J. M. White, T. Lópes, S. Laird, C. F. Hogan, D. J. D. Wilson, P. J. Barnard and P. S. Francis, *Chem. Eur. J.*, 2014, 20, 3322-3332; E. Kerr, E. H. Doeven, G. J. Barbante, C. F. Hogan, D. Bower, P. S. Donnelly, T. U. Connell and P. S. Francis, *Chem. Sci.*, 2015, 6, 472-479.
- 3. V. V. Pavlishchuk and A. W. Addison, Inorg. Chim. Acta, 2000, 298, 97-102.
- 4. E. Kerr, E. H. Doeven, G. J. Barbante, T. U. Connell, P. S. Donnelly, D. J. D. Wilson, T. D. Ashton, F. M. Pfeffer and P. S. Francis, *Chem. Eur. J.*, 2015, DOI: 10.1002/chem.201502037.