Electronic Supplementary Material (ESI) for Analyst. This journal is © The Royal Society of Chemistry 2015

Supporting Information for:

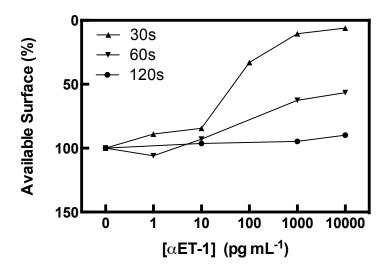
Using the inherent chemistry of the endothelin-1 peptide to develop a rapid assay for pre-transplant donor lung assessment

Andrew T. Sage,^a Xiaohui Bai,^{b,c} Marcelo Cypel,^{b,c} Mingyao Liu,^{b,c} Shaf Keshavjee,^{b,c} and Shana O. Kelley^{a,d*}

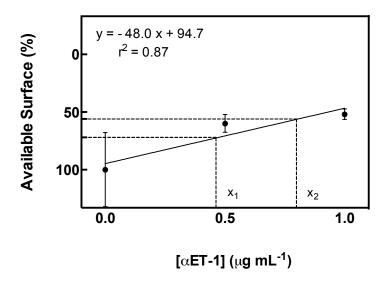
SI Figure 1. ET-1 biosensor characteristics

SI Figure 2. ET-1 detection in PBS

SI Table 1. Estimated ET-1 concentrations in PBS


a Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada.

b Division of Thoracic Surgery, University of Toronto, Toronto, ON, M5G 1L7, Canada.


c Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, ON, M5G 1L7, Canada.

d Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 3M2, Canada.

^{*}shana.kelley@utoronto.ca

SI Figure 1. ET-1 biosensor characteristics. Currents obtained (reported as % available surface for various concentrations of ET-1 antibody bound to the ET-1 peptide SAM (1 ng mL⁻¹) for sensors that were electrodeposited for 30 (triangles), 60 (inverted triangles), or 120 (circles) seconds.

SI Figure 2. ET-1 detection in PBS. Currents obtained (reported as % available surface) for the oxidation of ferrocyanide at the electrode surface for the detection of ET-1 in PBS. The equation and goodness of fit for the standard curve (circles, solid line) are shown in the upper left quadrant of the graph. Each point represents n = 5 different sensors and error-bars indicate s.e.m. The dashed lines represent the observed % available surface for two unknown ET-1 concentrations, x_1 and x_2 , extrapolated to theoretical anti-ET-1 concentrations.

SI Table 1. Estimated ET-1 concentrations in PBS.

Buffer	Unknown Sample	% Available Surface	[αET-1] Calculated (ng mL ⁻¹)	[ET-1] Calculated (ng mL ⁻¹)*	[ET-1] Actual (ng mL ⁻¹)
PBS	x ₁	72.0	472	528	500
	x_2	56.0	806	194	250

^{*}Calculated [ET-1] is obtained from the following equation: [ET-1]calc. = $[\alpha ET-1]$ added – $[\alpha ET-1]$ calculated where $[\alpha ET-1]$ added is 1 μ g mL⁻¹ and $[\alpha ET-1]$ calculated is obtained by solving the equation of the line in SI Fig 2. .