A water soluble glucopyranosyl conjugate as selective and reactive probe for cysteine in buffer and its application to living cells

Sivaiah Areti,^a Rohit Teotia^b and Chebrolu Pulla Rao^a*

^aBioinorganic Laboratory, Department of Chemistry, ^bDepartment of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai – 400076, India, E-mail: <u>cprao@iitb.ac.in</u>

	Contents Page n	0:
S01 .	Synthesis and characterization of P_2	02
S02 .	Synthesis and characterization of P_4	02
S03 .	Synthesis and characterization of C ₁	03
S04 .	Synthesis and characterization of P_5	04
S05 .	Synthesis and characterization of P ₆	05
S06 .	Synthesis and characterization of L	07
S07 .	Characterization of L ₁	08
S08 .	Fluorescence studies of L with amino acids	09
S09 .	Determination of Limit of Detection (LOD) of Cys by L	10
S10 .	Comparison of the detection limits of recently developed fluorescent	
	probes for Cys in the literature.	10
S11 .	Histogram for the competitive amino acid titrations of $[\mathbf{L}]$ with amino acids	11
S12 .	Fluorescence spectra for the titration of [L] with molecular weight thiols	12
S13 .	Fluorescence spectra for the titration of [L] with oxidized state	
	of BSA, HSA and GSH	12
S14 .	Fluorescence spectra for the titration of [L] with reduced state of BSA,	
	HSA and GSH	12
S15 .	Absorption spectra obtained during the titration [L] with	
	different amino acids	13
S16 .	Absorption spectra for the titration of [L] with oxidized forms	
	of GSH	14
S17 .	ESI MS spectrum for the titration of [L] with Cys	15

S01. Synthesis and characterization of P₂: P₂ derivative was synthesized by using a literature reported procedure.¹ [1] (a) Bolletta, F.; Fabbri, D.; Lombardo, M.; Prodi, L.; Trombini, C.; Zaccheroni, N. *Organometallics* **1996**, *15*, 2415-2417.; (b) Drillaud, N.; Estelle, B.-L.; Pezron, I.; Len, C.| J. Org. Chem. **2012**, *77*, 9553–9561.

P₂ was obtained as a yellow solid (85 %). ¹HNMR (400 MHz, CDCl₃, δ ppm): 1.9 (t, ¹J=2.2 Hz and ²J = 2.2 Hz, 1H), 2.8 (s, 6H), 3.8 (d, J= 7.4, 2H), 4.62 (t, ¹J = 9.8 Hz and ²J = 8.2 Hz, 1H), 7.18 (d, J = 7.8 Hz, 1H), 7.50-7.58 (m, 2H), 8.23-8.29 (m, 2H), 8.53 (d, J = 8.4 Hz, 1H).

Fig. S01: (a) ¹H NMR spectrum (CDCl₃, 400 MHz) of P_2 .

S02. Synthesis and characterization of P₄: This was synthesized by using a literature reported procedure.² [2] Nicolas, D.; Estelle, B.-L.; Isabelle, P.; Christophe, L. J. Org. Chem., 2012, 77, 9553-9561.

The yield is 69 % as white crystals. ¹HNMR (400 MHz, CDCl₃, δ ppm): 2.0 (S, 3H), 2.08 (S, 3H), 2.12 (S, 3H), 2.16 (S, 3H), 3.8-3.9 (m, 1H), 4.14 (d, J= 6.4 Hz, 1H), 4.28-4.3 (dd, ¹J= 2.2 Hz and ²J= 2.2 Hz 1H), 4.65 (d, J=7.6 Hz, 1H), 4.95 (t, ¹J= 7.2 Hz and ²J = 6.8 Hz, 1H), 5.15 (t, ¹J= 7.8 Hz and ²J= 5.6 Hz, 1H) 5.25 (t, J= 8.2 Hz and ²J= 6.4 Hz 1H).

Fig. S02. (b) 1 H NMR (CDCl₃, 400 MHz) for P₄.

S03. Characterization of C₁

Fig. S03: (c) ¹H NMR (CDCl₃, 400 MHz) (d) ¹³C NMR (CDCl₃, 400 MHz) (e) HRMS for C_1 .

S04. Characterization of P₅

Fig. S04. (f) 1 H NMR (CDCl₃, 400 MHz) (g) 13 C NMR (CDCl₃, 400 MHz) (h) HRMS for P₅.

S05. Characterization of P₆

Fig. S05. (i) 1 H NMR (CDCl₃, 400 MHz) (j) 13 C NMR (CDCl₃, 400 MHz) (k) ESI MS for P₆.

S06. Characterization of L

Fig. S06: (1) ¹H NMR (CD3OD, 400 MHz) (m) ¹³C NMR (CD3OD, 400 MHz) (o) HRMS for L.

S07. Characterization of L₁

Fig. S07: (p) ¹H NMR (CD₃OD, 400 MHz) (q) ¹³C NMR (D₂O, 400 MHz) (r) HRMS for L₁.

S08. Fluorescence studies of L with amino acids

Fig. S08 Fluorescence spectra obtained for the titration of L [5 μ M, λ_{ex} = 360 nm] with different amino acids in HEPES buffer pH at 7.4.

S09 Determination of Limit of Detection (LOD) of Cys by L

Fig. S09 (a) Fluorescence spectral traces of L during titration with Cys to determine LOD. (b) The linear dynamic fluorescence response for the titration of L with Cys to determine the detection limit (LOD). The LOD was derived by using the formula $3\sigma/k$ where σ = standard deviation of the blank (10 blank samples) and k = is the slope of linear calibration curve.

S10. Comparison of the detection limits of recently developed fluorescent probes for Cys in the literature.

Probe	Detection	Detection	Reference
	medium	Limit (M)	
02N-()-===================================	Tris-HCl buffer	100×10^{-6}	Bioorg. Med. Chem.
NÒ2 ^O NO2			Lett. 2008, 18, 2246
	HEPES	2.13×10^{-5}	Org. Lett., 2013, 15
	Buffer:DMSO		, 3630–3633
\bigcirc	(20:80)		
2	CH ₃ CN:H ₂ O:	5×10 ⁻⁷	Org. Biomol.
	DMSO		Chem., 2012 , 10,
- mo ₂	(79:20:1)		1966
N-N C	CH ₃ CN:H ₂ O	4.19×10^{-7}	Analyst, 2013, 138,
			7169–7174
uya -			

0 8 0 0 0 0 0 0 0 0 0 0 0	CH ₃ OH/H ₂ O	4×10^{-7}	Org. Biomol.
	(4:1)		Chem., 2011 , 9,
$\sum_{k=1}^{n} a_{k}^{k} \neq 0$			3844
	HEPES buffer:	7×10 ⁻⁸	<i>RSC Adv.</i> , 2013 , <i>3</i> ,
N O O	CH ₃ CN (70:30)		11543–11546
	HEPES buffer	2.5×10^{-7}	Present work
	(100 %)		
NO ₂			

S11. Histogram for the competitive amino acid titrations of [L] with amino acids

Fig. S11. Fluorescence spectra obtained for the competitive titration of L (5μ M) with Cys in presence of different amino acids (200μ M). (a) Histogram showing the fluorescence response of L at 550 nm band when titrated with different amino acids. (b) Visual fluorescent color change of {L+Amino acids} +Cys} with different amino acids under 365 nm UV-light.

S12. Fluorescence spectra for the titration of [L] with different molecular weight thiols

Fig. S12: Fluorescence spectra obtained for the titration of L [5 μ M, $\lambda_{ex} = 360$ nm] with molecular weight thiols in *HEPES buffer* at pH 7.4; (a) MPA, (b) TAA, (c) Hcy, (d) DTT_{red} and (e) GSH_{red}.

S13. Fluorescence spectra for the titration of [L] with oxidized state of BSA, HSA and GSH

Fig. S13. Fluorescence spectra obtained for the titration of L (5 μ M, λ_{ex} = 360 nm) in HEPES buffer at pH 7.4 with oxidized state of (a) BSA, (b)HSA and (c) GSH_{OX}

Fig. S14: Fluorescence spectra obtained for the titration of L (5 μ M, λ_{ex} = 360 nm) in HEPES buffer at pH 7.4 with reduced state of (a) BSA, (b)HSA and (c) GSH.

S15. Absorption spectra obtained during the titration [L] with different amino acids

Fig. S15. UV-Visible spectral traces obtained during the titration of L (10μ M) with different amino acids in HEPES buffer at pH 7.4.

S16. Absorption spectra for the titration of [L] with oxidized forms of GSH

Fig. S16. UV-Visible spectral traces obtained during the titration of L (10μ M) with GSH_{ox} in HEPES buffer at pH 7.4.

S17. ESI-MS spectra obtained during the titration of [L] with Cys

Fig. S17. ESI-MS spectral titration of **L** with Cys in CD₃OD-D₂O (1:1): (a) [**L**] followed by 'n' equivalents of Cys, where, (a) n=0, (b) n= 1, (c) n = 2.5, (d) n = 5 and (e) n = 10.