Electronic Supplementary Material (ESI) for Analyst. This journal is © The Royal Society of Chemistry 2015

Electronic Supporting Information

ESI Table 1: An overview of current literature reports on the use of metallic-film modified electrodes for the sensing of key metal ion species.

Electrode Modification	Underlying Electrode	In-/Ex- situ	Target Analyte(s)	Limit of Detection	Technique	Notes / Comments	Reference (within the main text)
Bismuth							
Bismuth film	GCE	In-situ	Lead (II)	1.1 μg/L (5.30 nM)	ASV	One of the first reports into Bismuth Modified Electrodes, explaining that Acetate buffer solution is used to recreate identical conditions to the mercury electrode system.	50
Bismuth powder mixed within carbon paste	СРЕ	Ex-situ	Cadmium (II) Lead (II)	1.2 μg/L (10.67 nM) 0.9 μg/L (4.34 nM)	SW-ASV	Proof of concept demonstrated in a real sample (tap water). Model solution: pH 4.5 0.2 M Acetate Buffer.	4
Bismuth film	Edge-plane pyrolytic graphite	In-situ	Cadmium (II) Lead (II)	0.062 μg/L (0.55 nM) 0.084 μg/L (0.40 nM)	SW-ASV	Excellent recovery in spiked river water (100.5 % Cd (II) and 98 % Pb (II)). Model solution: pH 4.5 0.2 M Acetate Buffer.	11
Bismuth oxide	SPE	Ex-situ	Cadmium (II)	16 μg/L (142.35 nM) 8 μg/L (38.61 nM)	CCSCP	Proof of concept demonstrated through detection of lead (II) in soil extracts and	36

			Lead (II)			waste water. Model solution: 0.5 M ammonium acetate containing 0.1 M HCl	
						(pH 4.6)	
Bismuth film	Graphite- epoxy composite	In-situ	Cadmium (II) Lead (II) Zinc (II)	2.2 μg/L (19.57 nM) 23.1 μg/L (111.49 nM) 600 μg/L (9230.76 nM)	SW-ASV	Exhibits well-defined, undistorted, reproducible and sharp stripping signals with RSD of 2.99%, 1.56% and 2.19% for Pb (II), Cd (II) and Zn (II) respectively. Application of this electrode towards tap water and soil samples showed promise for the future. Model solution: pH 4.5 0.1 M Acetate Buffer.	37
Bismith film	GCE	In-situ	Cadmium (II) Lead (II) Zinc (II)	0.2 μg/L (1.77nM) 0.2 μg/L (0.96 nM) 0.7 μg/L (10.77 nM)	SW-ASV	Successfully applied to the determination of Pb (II) and Zn (II) in tapwater and human hairwith the results in agreement with atomic absoprtions spectroscopy. Model solution: pH 4.5 1.0 M Acetate Buffer.	38
Bismuth film	Silicon dioxide produced <i>via</i> photolithogra phy	Ex-situ	Cadmium (II) Lead (II)	1 μg/L (8.89 nM) 0.5 μg/L (2.41 nM)	SW-ASV	Interference caused by Cu (II) was alleviated by the addition of ferrocyanide in the sample solution. Successful determination of Cd (II) and Pb (II) in a phosphate fertilizer and a river water sample. Model solution: pH 4.5 1.0 M Acetate Buffer.	75
Nafion coated bismuth film	GCE rotating disk	In-situ	Cadmium (II)	0.1 μg/L (0.88 nM) 0.1 μg/L (0.48 nM)	ASV	Applied towards detection in tap-water, urine and wine. Model solution: pH 4.5	39

			Lead (II)	0.4 μg/L (6.15 nM)		0.1 M Acetate Buffer.	
			Zinc (II)				
Bismuth oxide	SPE	Ex-situ	Zinc (II)	33 μg/L (507.69 nM)	SW-ASV	Bismuth oxide present within sensor removing requirement of electrode preparation. Applied towards detection in sea water samples allowing for a limit of detection of 50 µg/L. Model solution: pH 4.5 0.1 M Acetate Buffer.	44
Multiwalled carbon nanotubes dispersed in Nafion mixed with bismuth	GCE	In-situ	Cadmium (II) Lead (II)	0.04 μg/L (0.03 nM) 0.03 μg/L (0.14 nM)	DP-ASV	Proof of concept demonstrated in tap water of which the findings were in excellent agreement with atomic absorption spectroscopy. Model solution: pH 4.5 0.1 M Acetate Buffer.	40
Bismuth film	Carbon film resisitor	In-situ	Cadmium (II) Lead (II) Zinc (II)	0.11 μg/L (1.05 nM) 0.16 μg/L (0.79 nM) 0.008 μg/L (1.30 nM)	SW-ASV	Electrodes were characterised voltammetrically and using electrochemical impedance spectroscopy. Bismuth films deposited galvanostatically and via potential cycling studied for the first time,. Model solution: pH 4.5 0.1 M Acetate Buffer.	76
Bismuth film	GCE Rotating disc	In-situ	Thallium (I)	0.21 μg/L (10.8 nM)	ASV	Cadmium interference determined interference from cadmium (II) ions. Model solution: pH 4.5 0.1 M Acetate	41

						Buffer.	
Bismuth film	Multi-Walled Carbon Nanotubes	In-situ	Cadmium (II) Lead (II) Zinc (II)	0.7 μg/L (6.22 nM) 1.3 μg/L (6.22 nM) 12 μg/L (184.61 nM)	SW-ASV	Zn (II) could not be determined in the presence of Cu, xylene and PDDA even at low concentration. Model solution: pH 4.5 0.1 M Acetate Buffer.	77
A mono- or submonolayer of adsorbed bismuth	Mesoporous platinum microeletrode	In-situ	Glucose	2775.37 µg/L (5 x10 ⁵ nM) ^ŋ	CV	The performance displayed by the non- enzymatic BiMPtEs proposed here suggests wider potential applications with respect to those for classical enzymatic glucose sensors. Examples include glucose detection in media at very low or high pH values, at temperature higher than room values, and for continuous monitoring of glucose in a bioreactor or foods. Model solution : 0.2 M NaOH solution.	78
Bismuth film	GCE	Ex-situ	Cadmium (II) Zinc (II)	0.67 μg/L (6.0 nM) 13.00 μg/L (200 nM)	SW-ASV	The stability of the bismuth film under ultrasound was assessed using voltammetric and AFM measurements: after the initial loss,the bismuth film remains intact. Model solution: pH 5.2 0.1 M Acetate Buffer.	42
Polymer coated- bismuth film	GCE	In-situ	Cadmium (II) Lead (II) Zinc (II)	2 μg/L (17.79 nM) 2 μg/L (9.65 nM) 6 μg/L (92.30 nM)	SIA-ASV	Polymer coating improves tolerance to surfactants and long-term stability of the electrode whist increasing potentially time consuming preporatory steps. Model	43

						solution: pH 4.5 0.1 M Acetate Buffer.	
Bismuth film	GCE	In-situ	Cadmium (II) Lead (II) Zinc (II) Thallium (I)	γ 1.1 μg/L (5.31 nM) γ γ	ASV	Bismuth presence overcomes problem of overlapping peaks for simultaneous measurement of the three analytes. pH 4.5 0.1 M Acetate Buffer.	79
Bismuth film	CPE	In-situ	Lead (II)	0.41 μg/L (2.00 nM)	PSA	Simultaneous detection of Pb (II) and Cd (II) using Bismuth film electrode. Model Solution: pH 4.5 0.1 M Acetate Buffer.	80
Bismuth film	GCE	Ex-situ	Cobalt (II) Nickel (II)	0.08 μg/L (1.36 nM) 0.26 μg/L (4.43 nM)	ASV	Robust sensor not suceptible to dissolved oxygen when attempting simultaneous sensing of the analytes. Model Solution: pH 9.2 0.01 M Ammonium Buffer.	81
Bismuth film	GCE	Ex-situ	Cobalt (II)	γ	DP-AdSV	Composition of the plating solution, the influence of accumulation potential, and the stability of bismuth coating as well as the memory effect is studied. Model Solution: pH 9.2 0.01 M Ammonium Buffer.	82
Bismuth film	GCE	In-situ	Indium	10 μg/L (87.09 nM) ^ŋ	SW-ASV	Studies in the presence of Cd (II) and Pb (II). Determined that simultaneous determination of indium, cadmium and lead is possible. Model Solution 0.1 M Acetate Buffer with 0.1M KBr.	83
Bismuth film	GCE	Ex-situ	2-	0.4 µg/L (2.88 nM)	CV	Suitable for both batch voltammetric and	84

Bismuth film	GCE	Ex-situ	nitrophenol 4- nitrophenol 2,4- dinitrophenol Thiamethoxa m	1.4 μg/L (10.06 nM) 3.3 μg/L (23.72 nM) 380 μg/L (1302.66 nM)	DPV	flow amperometric detection of the environmentally significant nitrophenols. Model Solution: Brittion-Robinson buffer Results were justified by the comparative HPLC/DAD measurements. Model Solution: Britton–Robinson buffer.	85
Bismuth film	GCE	Ex-situ	Azorubine Ponceau 4R	300 μg/L (594.71 nM) 100 μg/L (165.43 nM)	DPV	Simultaneous detection of the two azo dyes cannot be done, as their potentials are in the same range. Such detection is only possible using mercury electrodes. Model Solution: 0.5 M HNO ₃ .	86
Bismuth film	GCE	In-situ	Cadmium (II) Lead (II) Cobalt (II) Nickel (II)	2 μg/L (17.79 nM) 1 μg/L (4.82 nM) 1 μg/L (16.96 nM) 1 μg/L (17.03 nM)	ASV (Cd, Pb) AdSV (Co, Ni)	Simultaneous detection of Pb (II), Cd (II) and Zn (II) using the bismuth film electrode, within a fertiliser sample. Model Solution: 1.0 M Acetate Buffer.	87
Bismuth film	Iridium microwire	In-situ	Cadmium (II) Lead (II)	1.5μg/L (13.35 nM) 1 μg/L (4.82 nM)	SW-ASV	Applied to determination in wastewater and tapwater samples. Model Solution: pH 4.5 0.1 M Acetate Buffer	88
Bismuth film	GCE	Ex-situ	Cadmium (II) Lead (II)	10 μg/L (88.97 nM) 10 μg/L (48.26 nM) 10 μg/L (153.85 nM)	ASV	Zn (II) detection hindered through the presence of aluminium. Model Solution: PIPES buffer solution.	89

			Zinc (II)	10 µg/L (8.71 nM)			
			Indium (III)				
Bismuth film	BDDE	In-situ	Cadmium (II) Lead (II)	2.3 μg/L (20.46 nM) 1.9 μg/L (9.17 nM)	SW-ASV	Pb (II) and Cd (II) could not be detected simultaneously at a bare BDDE, whilst on a bulk Bismuth macro electrode the limits of detection for the simultaneous determination were ~ ten times higher. Model Solution: pH 1 0.1M HClO ₄ .	10
Gold nanoparticle- graphene- cysteine composite modified bismuth film	GCE	In-situ	Cadmium (II) Lead (II)	0.1 μg/L (0.88 nM) 0.05 μg/L (0.24 nM)	SW-ASV	The developed electrode displayed a good repeatability and reproducibility. These studies imply that the gold nanoparticle- graphene-cysteine composites might be an alternative candidate for practical applications in electrochemical detection of metal ions. Model solution: pH 4.5 0.1 M Acetate Buffer.	90
Bismuth film electrode modified with mesoporous silica nanoparticles	GCE	In-situ	Cadmium (II) Lead (II)	0.6 μg/L (5.39 nM) 0.2 μg/L (0.97 nM)	SW-ASV	The modified electrodes admirable stripping performance for Pb (II) and Cd (II) detection was attributed to the increased surface area and mass transfer on the electrode surface due to the incorporation mesoporous nano-silica. Model Solution: pH 4.5 0.2 M acetate buffer.	91
Bismuth film electrode	GCE	In-situ	Cadmium (II)	0.1 μg/L (0.90 nM) 0.05 μg/L (0.24 nM)	SW-ASV	The study concluded that functional nanocomposites based on the thiol–ene	92

modified with			Lead (II)			chemistry may offer high application	
electroreduced						potential to treatment and analysis of	
granhene oxide-						environmental heavy metals. Model	
supported						solution: pH 4.5.0.1 M A setate Buffer	
supported						solution. pri 4.5 0.1 W Acetate Burler.	
tinolated							
thionine							
Bismuth film	SPE	In-situ	Cadmium (II) Lead (II)	0.5 μg/L (4.45 nM) 0.8 μg/L (3.86 nM)	SW-ASV	The disposable electrode demonstrated high selectivity for the target metal ions determination and was applied to quantitatively analyze Cd (II) and Pb (II) levels in milk sample extracts with satisfactory results. Model solution: pH 4.5 0.1 M Acetate Buffer.	93
Bismuth Film	GCE	In-situ	Cadmium (II) Lead (II)	0.005 μg/L (0.045 nM) 0.04 μg/L (0.19 nM)	ASV	This study utilises a 12 mm GCE and uses double deposition, gaining exceptional limits of detection, due to the large size of the working electrode. Model solution: pH 4.5 0.1 M Acetate Buffer.	94
Antimony							
Antimony film	GCE	In-situ	Cadmium (II) Lead (II)	0.7 μg/L (6.23 nM) 0.9 μg/L (4.34 nM)	ASV	Convenient operation in acidic solutions of pH 2 or lower (which is superior to that reported for Bismuth films) in the presence of dissolved oxygen. Model solution: pH 2 0.01 M HCl.	22

Antimony film	СРЕ	In-situ	Cadmium (II) Lead (II)	0.8 μg/L (7.12 nM) 0.2 μg/L (0.97 nM)	ASV	The practical applicability of the proposed electrode was successfully ascertained via measurement of cadmium and lead ions in the real sample of lake water. Model solution: pH 2 0.01 M HCl.	24
Antimony film	GCE	Ex-situ	Cadmium (II) Lead (II) Ni (II)	1.1 μg/L (9.79 nM) 0.3 μg/L (1.45 nM) 6 μg/L (102.23 nM) ^m	ASV (Cd, Pb) AdSV (Ni)	The antimony-film revealed favourable electroanalytical performance similar to that of the in-situ prepared antimony-film and comparable to bismuth- and mercury- based electrodes. Model solution: pH 1 0.1 M HCl.	95
Antimony film	GCE	In-situ	Cadmium (II) Lead (II)	1.4 μg/L (12.46 nM) 1.2 μg/L (5.79 nM)	SIA-ASV	The presence of KSCN in the sample solution offers the possibility of detecting ions with more negative oxidation potentials like Zn(II), Mn(II) or Cr(III). Model solution: pH 1 0.1 M HCl.	96
Macroporous antimony film	Gold	Ex-situ	Cadmium (II) Lead (II)	0.7 μg/L (6.23 nM) 0.5 μg/L (2.41 nM)	ASV	Further studies would optimise the pore structure and study the limits of this enhancement effect. Model solution: pH 1 0.1 M HCl.	97
Antimony film	СРЕ	In-situ	Indium (III) Thallium (I)	2.4 μg/L (20.91 nM) 1.4 μg/L (6.85 nM)	Stripping Chronopote ntiometry	Potential selective determination of Tl (I) in the presence of Ir (III) and Zn (II) is discussed. Model solution: pH 1 0.1 M HCl.	98
Antimony film	Titanium	Ex-situ	Nickel (II)	0.2 μg/L (3.39 nM)	SW-AdSV	Novel antimony-sputtered electrodes,	27

						fabricated by standard microelectronics thin-film technology. Model Solution: pH 9.2 0.01 M Ammonium Buffer.	
Antimony film	CPE	In-situ	Cadmium (II) Lead (II)	10 μg/L (88.97 nM) 10 μg/L (48.26 nM)	PSA	Simultaneous detection of Pb (II) and Cd (II), using SbF-CPE and BiF-CPE. Model solution: pH 2 0.01 M HCl.	24
Antimony film	Carbon fiber microelectrod e	In-situ	Cadmium (II) Lead (II)	1.9 μg/L (16.90 nM) 3.1 μg/L (14.96 nM)	ASV	Practical application of the SbFME was demonstrated <i>via</i> measuring Cu (II) in the standard reference solution of natural water. Model solution: pH 2 0.01 M HCl.	28
Antimony film	GCE	Ex-situ	Sulfasalazine	310.75 μg/L (780 nM)	SW-ASV	The first application of the antimony film electrode in pharmaceutical analysis. The antimony film electrode revealed favourable electroanalytical characteristics and when compared to its bismuth and bare GCE counterparts. Model solution: pH 2 0.01 M HCl.	99
Nafion-coated antimony film electrode	Δ	In-situ	Cadmium (II) Lead (II)	0.3 μg/L (2.67 nM) 0.15 μg/L (0.72 nM)	DP-ASV	The electrode was successfully applied to determining Pb (II) and Cd (II) in vegetable and water samples with satisfactory results. Model solution: pH 2 0.01 M HCl.	100
Tin							

Tin-film	GCE	In-situ	Cadmium (II) Zinc (II)	0.7 μg/L (6.23 nM) 0.9 μg/L (13.85 nM)	SW-ASV	Extended by exploring the possibility to detect other metals normally determined by ASV Tl (I), Pb (II), Cu (II)). Model solution: pH 2 0.01 M HCl.	29
----------	-----	---------	------------------------------	---	--------	--	----

- m= Lowest concentration addition recorded
- y = Limit of detection not provided
- Δ = Information not accessible
- ASV = Anodic Stripping Voltammetry
- SW-ASV = Square-Wave Anodic Stripping Voltammetry
- DP-ASV = Differential Pulse Anodic Stripping Voltammetry
- DPV Differential Pulse Voltammetry
- CCSCP = Constant Current Stripping Chronopotentiometric Measurment
- CV = Cyclic Voltammetry
- SIA-ASV = Sequential-Injection Analysis Anodic Stripping Voltammetry
- PSA = Potentiometric Stripping Analysis
- DP-AdSV = Differential Pulse Adsorptive Stripping Voltammetry
- SW-AdSV = Square Wave Adsorptive Stripping Voltammetry

ESI Figure 1

Linear sweep voltammograms resulting from 10 mgL⁻¹ antimony (III) with additions of tin (II) $(1 - 40 \text{ mgL}^{-1})$ towards 1030 µgL⁻¹ lead (II) and 560 µgL⁻¹ cadmium (II) in a pH 4.3 acetate buffer solution using both SPE (A) and BDDE (B) (dotted line equates to optimum concentration of antimony (III) and tin (II)). Deposition potential and time: - 1.2 V (*vs.* SCE) and 120 seconds respectively. Inset: Corresponding plots of voltammetric peak height versus tin (II) / antimony (III) concentration (cadmium (II) – triangles; lead (II) – circles).

ESI Figure 2

Linear sweep voltammograms resulting from additions of 10 mgL⁻¹ and 5 mgL⁻¹ bismuth (III) and tin (II) respectively into a solution containing 1030 μ gL⁻¹ lead (II) and 560 μ gL⁻¹ cadmium (II) in a pH 4.3 acetate buffer solution using both SPE (A) and BDDE (B) (dotted line equates to optimum concentration of bismuth (III) and tin (II)). Deposition potential and time: - 1.2 V (*vs.* SCE) and 120 seconds respectively. Inset: Corresponding plots of voltammetric peak height versus tin (II) / bismuth (III) concentration (cadmium (II) – triangles; lead (II) – circles).

