Electronic Supplementary Material

Direct detection of illicit drugs from biological fluids by desorption/ionization mass spectrometry with nanoporous silicon microparticles

T.M. Guinan^a, P. Kirkbride^b, C. B. Della Vedova^c, S. G. Kershaw^c, H. Kobus^b and N. H. Voelcker^a

^aARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Mawson Institute, Australia

^bSchool of Physical and Chemical Sciences, Flinders University, Bedford Park, SA 5042, Australia

^cSchool of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia

Corresponding author: Nicolas H. Voelcker* ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Mawson Insititute, University of South Australia GPO Box 2471, Adelaide SA 5001, Australia Phone: +61 (08) 8302 5508 Fax: +61 (08) 8302 5613 E-mail: <u>nico.voelcker@unisa.edu.au</u>

Material and methods

Determination of Plasma Oxycodone and Metabolite Concentration via SPE-LC-MS-MS: Plasma oxycodone and metabolite concentrations were analyzed from liquid chromatography mass spectrometry (LC-MS) using a a Shimadzu Nexera LC-30AD UHPLC system and an AB Sciex 5600 TripleTOF[™] mass spectrometer. Chromatographic separation was performed using a Phenomenex Gemini pentafluorophenyl C18 column (5 um, 100 A, 250 x 4.6 mm). AFCV-32AH switching valve (Shimadzu Corp., Japan) was employed to divert only the LC eluent between 5 and 9 min to mass spectrometer to protect it from potential contamination. The mass spectrometer was operated in positive ion mode. The m/z 316/298 ion was monitored for oxycodone, the m/z 302/284 for oxymorphone and noroxycodone and the m/z 305/287 for noroxycodone-d3, respectively.

Fig. S1. A) DRIFT-IR spectra of oxidized, F_5 Ph, F_{13} and ODS functionalized pSi-MPs. B) Inset of (A) showing the fingerprint region between 1700 and 500 cm⁻¹.

Fig. S2. SEM micrographs of pSi-MPs etched at A) 55 mA/cm², 4 min, B) 111 mA/cm², 2 min, C) 111 mA/cm², 4 min, D) 111 mA/cm², 6 min, E) 222 mA/cm², 2 min, F) 222 mA/cm², 4 min and G) 333 mA/cm², 4 min. Scale bar is 300 nm. Graphs representing average pore size (H) and thickness (I) for n=20 replicates.

Fig. S3. SEM micrographs of sieved pSi-MPs using 25, 53 and 75 μ m sieves, respectively. Sieving produced pSi-MPs with particle sizes of A) 19.2 ± 2.4 μ m, B) 35.2 ± 7.2 μ m, C) 56.1 ± 8.3 μ m and D) 85.0 ± 17.2 μ m.

Cocaine (1000 ng/mL)	85.0 ± 17.2 μm	35.2 ± 7.2 μm	19.2 ± 2.4 μm
85.0 ± 17.2 μm	P<.01	P<.05	P<.01
56.1 μm± 8.3 μm		P<.01	P<.01
35.2 ± 7.2 μm			P<.01
MDMA (1000 ng/mL)	85.0 ± 17.2 μm	35.2 ± 7.2 μm	19.2 ± 2.4 μm
85.0±17.2 μm	n/s	P<.05	P<.01
56.1 μm± 8.3 μm		P<.01	P<.01
35.2 ± 7.2 μm			P<.01
Methadone (1000 ng/mL)	85.0 ± 17.2 μm	35.2 ± 7.2 μm	19.2 ± 2.4 μm
85.0 ± 17.2 μm	n/s	n/s	P<.01
56.1 μm± 8.3 μm		n/s	P<.01
35.2 ± 7.2 μm			P<.01

 Table S1. Turkey HSD Test for post ANOVA pair-wise comparisons in a one way ANOVA.

Fig. S4. SALDI mass spectra for cocaine on A) 85.0 \pm 17.2 μ m, B) 56.1 \pm 8.3 μ m, C) 35.2 \pm 7.2 μ m and D) 19.2 \pm 2.4 μ m pSi-MPs functionalized with F₁₃.

Fig. S5. Full width half maximum (FWHM) values for sieved pSi-MPs corresponding to average S/N observed for the detection of cocaine on $19.2 \pm 2.4 \mu m$, $35.2 \pm 7.2 \mu m$, $56.1 \pm 8.3 \mu m$ and $85.0 \pm 17.2 \mu m$. FWHM was calculated using flexAnalysis software. Error bars correspond to standard deviation (n=3).

Fig. S6. Representative SALDI-MS/MS spectrum observed for cocaine in water. Characteristic fragment peaks were observed at m/z 272 and 182.

Fig. S7. Representative SALDI mass spectrum observed for a urine sample analyzed on F_{13} functionalized pSi-MP showing the presence of EDDP (MH⁺ 278).

Fig. S8. SALDI mass spectra on F_{13} functionalized pSi-MP for oxycodone in A) plasma (20.4 ng/mL) and B) saliva 2 h post dose. Star represents the detection of oxycodone (MH⁺ 316).