Electronic Supplementary Material (ESI) for Analyst.
This journal is © The Royal Society of Chemistry 2015

//Image processing macro for ImagelJ (NIH) to analyze images of paper-based channel invasion
I 1111111117117
//Definitions:

// 1) Distance markers: wax-printed distance markers on the top and bottom of the

// channel at 3.0, 4.0, 5.5, 8.0 and 9.0 mm (Figure 2A). These markers are fluorescent.

// 2) Orientation marker: wax-printed marker on the right end of the channel. This marker spans the
// width of the channel (Figure 2A) and is fluorescent.

//

//This macro will:

// 1) Allow the user to select a root folder with images corresponding to multiple time points of the

// same channel.

// 2) Open the first image in the root folder (time point = 0 h), and convert it into a 16-bit image if its bit
// depth is greater than 16-bit.

//3) Prompt the user to make an initial line selection. This line should underline the upper distance

// markers running along the length of the channel. The image is then rotated based on the slope
// of this line.

// 3) Find the channel orientation marker, and use it to build a “bounding box” within the channel,

// spanning from the 3.0 mm distance markers to the 9.0 mm distance markers. The upper y-

// coordinate border is defined by the user-drawn line (half the vertical distance between the line’s
// endpoints) and spans the width of channel, 1300 pixels down. The x-coordinate of

// the left border is a constant 5190 pixels less than the orientation marker. The x-coordinate of

// the right border is a constant 1810 pixels less than the orientation marker.

// (Note: This macro is made for 7392 x 1946 pixel images; constants will need to be adjusted if

// the image resolution changes.)

// 4) Average all y-pixels, for each x-pixel, across the length of the bounding box, and construct an array
// with these values.

// 5) Find the maximum value in the array and use 70% of this value to serve as a cutoff to determine

// the location of the bulk cell population. To do this, the array values at the leftmost and

// rightmost x-pixel are compared to 70% max value, and if these values are smaller, the macro will
// increment one pixel towards the center of the bounding box until the x-pixel exceeds 70% of the
// max value.

// (Note: We chose 70% of the max array value, because cells are seeded in a square-shaped

// distribution with spatial noise across the plateau. To ensure that that we capture the bulk of the
// seeded cells but do not pick an artificially high cutoff due to noise, we allotted a

// 30% signal variation between max averaged value across the channel and the bulk of seeded

// cells.)

// 6) Use the left and right 70% cutoff pixels to find the average intensity within the two newly defined
// cutoff boundaries.

// 7) Use the average intensity value found in the seeded region to perform another incremental

// comparison within the original bounding box, comparing the average seeded region intensity to
// the averaged y-pixels per x-pixel. This will determine the cell front on either side of the seeded
// region. The comparison will increment towards the center of the bounding box, until the

// average seeded signal is exceeded, establishing two new cutoff coordinates (L-cutoff, and R-

// cutoff) which will serve as boundaries for building rectangular selections for center of mass

// measurements.

// 8) Create one rectangular selection using the bounding box’s left boundary and the L-cutoff x-

// coordinates, and another selection using the R-cutoff and bounding box’s right boundary x-

// coordinates. The upper y-pixel boundary is determined by the original line selection, and

// extends 1300 pixels down, corresponding to the width of the channel.

// (Note: The pixel difference between boundary x-coordinates and the orientation marker is
// recorded, and will be used to construct rectangular selections for center of mass measurements
// in the subsequent images.)

// 9) Measure the center of mass in each rectangular selection, and save these values for an end-
// readout.

// 10) Close the original image, and open the subsequent image in the root folder.

// 11) Prompt the user to create a line selection, rotate the image, and find the orientation marker.
// 12) Create two rectangular selections of the same dimensions as the first image analyzed. The

// location of these selections is determined by the difference in pixels between the first image’s
// rectangular selection boundaries and orientation marker.

// 13) Close the image, and sequentially open the remaining images, repeating steps 10-12 for the

// remaining files.

T T

T
/////Select root file directory
// 1) User defines root folder.
// 2) Acquires list of files to be processed in root folder.
// 3) Opens first file.
//4) Converts file to 16-bit if file is greater than 16-bit.
// 5) Acquires image height and width in pixels.
output = getDirectory("Select root file with images to process...")
fileList = getFileList(output);
open(fileList[0]);
if(bitDepth>16)
run("16-bit");
imageHeight = getHeight();
imageWidth = getWidth();

T 1111111111711
/////Boundary arrays

//All arrays to be used for boundary creation and end-readout.

BoundaryValue = newArray(fileList.length);

LeftBoundary = newArray(fileList.length);

RightBoundary = newArray(fileList.length);

LeftBoundaryXM = newArray(fileList.length);

LeftBoundaryYM = newArray(fileList.length);

RightBoundaryXM = newArray(fileList.length);

RightBoundaryYM = newArray(fileList.length);

YValues = newArray(1300);

//1300 represents the distance, in pixels, across the width of the channel

XValueAvg = newArray(3380);

//3380 represents the distance, in pixels, across the length of the channel between left- and rightmost
// channel distance markers.

T
/////Orientation Arrays

// All arrays to be used for finding the orientation marker
OrientationXValue = newArray(fileList.length);
OrientationCheck = newArray(1300);
OrientationCheckXValue = newArray(1000);
OrientationPixel = newArray(fileList.length);

T 1111111711111
/////Rotate image
// 1) Prompts user to draw a line selection under the top channel length markers.
// 2) Uses this line selection to rotate the image.
waitForUser("Draw line selection", "Draw line under top-most channel distance markers to correct for
image rotation:\nOnce done, click 'OK"");
getline(Lx1, Ly1, Lx2, Ly2, Lw);
if (Ly2 > Ly1) {ay = Ly2;}
else {ay = Ly1;};
dLx = Lx2 - Lx1;
dlLy = Ly2 - Ly1;
hyp = dLx;
Angle = tan(dLy/dLx);
radAngle = -Angle*(180/3.145);

run("Rotate...", "angle=" + radAngle + " grid=1 interpolation=Bilinear");

M7
/////Find rightmost orientation marker

// 1) Calculates the average intensity of 1300 y-pixels per x-pixel of the 1000 rightmost x-pixels.
// 2) Finds the average intensity value of the 100 right most pixels, which serves as a background

// intensity.

// 3) Compares the background intensity to the average intensities across the 1000 rightmost x-pixels.
// The orientation marker is found when the average intensity is greater than 1.5*background
// intensity.

// 4) From this orientation marker, a bounding box is made with a left border at orientation marker -
// 5190 pixels, and a right border of orientation marker - 1810.

// 5) The upper y-boundary is the equidistant y-pixel between the original line selection's end points.
for(i=0; i<1000; i++) {
for(j=0; j < 1300; j++){
if(j==0) {
OrientationSum = 0;
2
OrientationCheck][j] = getPixel(i+imageWidth-1000, j+Ly1+(dLy/2));
OrientationSum = OrientationSum + OrientationCheck(j];
OrientationAvg = OrientationSum/1300;

2

OrientationCheckXValueli] = OrientationAvg;
2
for(i=999; i>899; i--) {

if(i==999) {
OrientationCheckXSum = 0;
2

OrientationCheckXSum = OrientationCheckXSum + OrientationCheckXValueli];
%
AvgReferenceValue = 1.5*OrientationCheckXSum/(100);
Check = 1000;
while(OrientationCheckXValue[Check-1] < AvgReferenceValue) {

Check--;
2
LeftLimitPixel = imageWidth - (5190+(1000-Check));
RightLimitPixel = imageWidth - (1810+(1000-Check));
makeRectangle(LeftLimitPixel, Lyl+(dLy/2), RightLimitPixel-LeftLimitPixel, 1300);
OrientationXValue[0] = Check;

s

////Set boundary limitations across channel
// 1) Using the x-pixel boundaries outlined in the previous section, the average intensity across 1300 y-

// pixels are measured per x-pixel, and sorted in an array.

// 2) Starting at the left border, the averaged y-pixels per x-pixel are compared to 70% of the maximum
// value in the newly created array. The x-pixel is incremented one unit until it exceeds 70% of the
// maximum value.

// 3) This process is repeated for the right boundary.
// 4) The right and left boundaries are saved in an array for the final readout, and the average of the

// averaged y-pixels is found within the 70% cutoff region.

// 5) This average value is then checked against the averaged y-pixels in one pixel increments from left
// to right and from right to left, establishing the L-cutoff and R-cutoff respectively. These edges
// are used to define new rectangle selections which enclose the cell front on either side of the
// seeded cell population.

for(i=0; i<RightLimitPixel-LeftLimitPixel; i++) {
for(j=0; j < 1300; j++) {
if(j==0) {
Sum =0;
7
YValues|[j] = getPixel(i+LeftLimitPixel,j+Ly1+dLy/2);
Sum = Sum + YValues[j];
7
XValueAvg[i] = Sum/(1300);
7

Array.getStatistics(XValueAvg, min, max, mean, stdDev);

k=0;

while(XValueAvg([k] < max*0.7) {
k++;

7

| = RightLimitPixel-LeftLimitPixel;

while(XValueAvg[l-1] < max*0.7) {
-

7

AvgCutOff = 0;

for(i=k; i<l; i++) {

AvgCutOff = (AvgCutOff + XValueAvgli]);
2
AvgCutOff = AvgCutOff/(l-k);
m=0;
while(XValueAvg[m] < AvgCutOff) {

m++;
I
n = RightLimitPixel-LeftLimitPixel;
while(XValueAvg[n-1] < AvgCutOff) {

n--;
I
LeftBoundaryPixel = m + LeftLimitPixel;
RightBoundaryPixel = n + LeftLimitPixel;
LeftBoundaryWidth = LeftBoundaryPixel-LeftLimitPixel;
RightBoundaryWidth = RightLimitPixel - RightBoundaryPixel;
OrientationPixel[0] = imageWidth - (1000-Check);
LeftBoundary[0] = LeftBoundaryPixel;
RightBoundary[0] = RightBoundaryPixel;

s

////Measure center of mass

// 1) To remove the impact of background signal on the center of mass measurement, a rolling ball

// background subtraction is done.

// 2) A selection rectangle is made using the left most bounding box x-pixel, stopping at the L-cutoff. The
// center of mass is then measured.

// 3) Another selection rectangle is made using the right most border x-pixel, stopping at the R-cutoff.

// The center of mass is then measured.

// 4) The center of mass values are saved in an array for post-analysis readout.

run("Subtract Background...", "rolling=100");

makeRectangle(LeftLimitPixel, Lyl+(dLy/2), m, 1300);

run("Measure");

LeftBoundaryXM[0] = getResult("XM", 0); LeftBoundaryYM[0] = getResult("YM", 0);
makeRectangle(RightBoundaryPixel, Lyl+(dLy/2),RightBoundaryWidth, 1300);
run("Measure");

RightBoundaryXM[0] = getResult("XM", 1); RightBoundaryYM[0] = getResult("YM", 1);
close();

i
//Process remaining images

// 1) Opens second file in the root folder to be processed.

// 2) User will be prompted to draw a line selection to orientate the image for further analysis.
// 3) After analysis, the image will be closed, and the proceeding image will be opened.

for(file=1; file < fileList.length; file++) {
open(fileList[file]);
if(bitDepth==24)

run("16-bit");

s
/////Rotate image

//Same function as in previous section
waitForUser("Draw line selection"”, "Draw line under top-most channel distance markers to correct for
image rotation:\nOnce done, click 'OK"");

getline(Lx1, Ly1, Lx2, Ly2, Lw);
if (Ly2 > Ly1) {ay = Ly2;}
else {ay = Lyl;};
h =1100;
dlx = Lx2 - Lx1;
dlLy = Ly2 - Ly1;
hyp = dLx;
Angle = tan(dLy/dLx);
radAngle = -Angle*(180/3.145);

run("Rotate...", "angle=" + radAngle + " grid=1 interpolation=Bilinear");

i
/////Orientate image

//Same function as previous orientation section, but uses distances from the orientation marker
// from the first image to reproduce those center of mass bounding boxes.
Check = 1000;
for(i=0; i<1000; i++) {
for(j=0; j < 1300; j++){
if(j==0) {
OrientationSum = 0;
12
OrientationCheck][j] = getPixel(i+imageWidth-1000,j+Ly1+(dLy/2));
OrientationSum = OrientationSum + OrientationCheck[j];
OrientationAvg = OrientationSum/1300;

2

OrientationCheckXValue[i] = OrientationAvg;
2
for(i=999; i>899; i--) {

if(i==999) {

OrientationCheckXSum = 0;
2

OrientationCheckXSum = OrientationCheckXSum + OrientationCheckXValueli];

2

AvgReferenceValue = 1.5*OrientationCheckXSum/(100);
while(OrientationCheckXValue[Check-1] < AvgReferenceValue) {
Check--;
2
OrientationPixel[file] = imageWidth - (1000-Check) ;
LeftLimitPixel = imageWidth - (5190+(1000-Check));
RightLimitPixel = imageWidth - (1860+(1000-Check));

LeftBoundary([file] = LeftLimitPixel + LeftBoundaryWidth;
RightBoundary[file] = RightLimitPixel - RightBoundaryWidth;

I 1111171171171
////Measure center of mass
//Same function as previous section
run("Subtract Background...", "rolling=100");
makeRectangle(LeftLimitPixel, Lyl+(dLy/2), LeftBoundaryWidth, 1300);
run("Measure");
LeftBoundaryXM(file] = getResult("XM", file*2); LeftBoundaryYM([file] = getResult("YM", file*2);
makeRectangle(RightLimitPixel-RightBoundaryWidth, Ly1+(dLy/2), RightBoundaryWidth, 1300);
run("Measure");
RightBoundaryXM([file] = getResult("XM", file*2+1); RightBoundaryYM(file] = getResult("YM",
file*2+1);
close();

|3

s
/////Results readout
//Produces a readout of the x-pixels for the orientation marker, left and right cutoff pixels (averaged
// seeding cutoff), and center of mass pixels.
run("Clear Results");
for (i=0; i<fileList.length; i++) {
setResult("Orientation Pixel", i, OrientationPixel[i]);
setResult("Left Boundary pixel", i, LeftBoundaryli]);
setResult("Right Boundary pixel", i, RightBoundaryl[i]);
setResult("Left XM", i, LeftBoundaryXM[i]);
setResult("Left YM",i, LeftBoundaryYM[i]);
setResult("Right XM", i, RightBoundaryXM([il);
setResult("Right YM",i, RightBoundaryYM][i]);
12

updateResults;

s
////Data analysis
//The final readout provides the x-coordinates for the orientation marker, left and right boundary, and

// left and right center of mass values (Left XM and Right XM, respectively).

//To analyze this data, the x-coordinates must first be corrected for horizontal shifts between images.
// This is done by taking the difference between the orientation marker coordinate at time =0 h
// and the other time points.

// Ex: Shift,a, = Orientationg, — Orientation,ap,

//This shift is then added to the XM values. These corrected XM values are then compared to one
// another to derive change in center of mass as a function of time.

