Electronic Supplementary Information

A dual-mode colorimetric and fluorometric "light on" sensor for thiocyanate based on fluorescent carbon dots and unmodified gold

nanoparticles

Dan Zhao, ^{a,b} Chuanxia Chen, ^{a,b} Lixia Lu, ^{a,b} FanYang, ^{*a} and Xiurong Yang^{*a}

^a State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China

^b University of Chinese Academy of Sciences, Beijing 100049, China

^{*} Corresponding author at: State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.

Tel.: +86 431 85262056; Fax: +86 431 85689278.

E-mail: xryang@ciac.ac.cn.

Fig. S1. XPS pattern of the as-prepared CDs.

Fig. S2. XPS of CDs. (A) C 1s spectrum. (B) N 1s spectrum .

Fig. S3. FTIR spectrum of the as-prepared CDs.

Fig. S4. Particle size distribution measured by DLS. (A) Dispersed AuNPs, (B) aggregated AuNPs+CDs, and (C) AuNPs+SCN⁻+CDs.

Fig. S5. (A) Fluorescence emission spectra of CDs in the presence of various concentrations of AuNPs in 10 mM PBS buffer (pH=7.0). CDs, 30 μ L; AuNPs (from top to bottom): 0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6, 4.0, 4.4, 4.8 and 5.2 nM, respectively. (B) Plot of the F₀/F value of fluorescence at 438 nm as a function of the concentration of AuNPs. Inset shows the Stern-Volmer plot of CDs quenched by AuNPs.

Fig. S6. (A) The absorbance ratio A_{630}/A_{520} and (B) fluorescence enhancement efficiency (F-F₀)/F₀ of the proposed assay as a function of various pH values in the absence and presence of SCN- (5 μ M). CDs: 30 μ L.

Fig. S7. The absorbance ratio A_{630}/A_{520} as a function of volume of CDs in the absence and presence of SCN⁻ (5 μ M). AuNPs: 3.3 nM, and pH: 7.0.

Fig. S8. (A) The absorbance ratio A_{630}/A_{520} and (B) fluorescence enhancement efficiency (F-F₀)/F₀ of the proposed assay in the presence of different concentrations of SCN⁻ as a function of time. AuNPs: 3.3 nM, CDs: 30 μ L and pH: 7.0.

Fig. S9. The A_{630}/A_{520} response of the sensing assay toward different anions. Conditions: 30 µL CDs, 10 mM PBS (pH=7.0), and 100 µM for anions.

Fig. S10. The A_{630}/A_{520} response of the proposed assay for S²⁻ (A) and I⁻ (B) in the absence of a masking reagent. The concentration of anions: 20 μ M for I⁻ and S²⁻, 100 μ M for Pb²⁺ and S₂O₈²⁻.

Fig. S11 (A) UV-vis spectra and (B) fluorescence spectra of the proposed system in the presence of different substances. Concentrations: 5 μ M for SCN⁻, 2 μ M for Hg²⁺ and 20 μ M for EDTA.

Table S1. Comparison of different optical nanosensors for thiocyanate determination.

Probe	Mode	Linear range	LOD	Time	Remark	Ref.
Tween 20-AuNPs	Colorimetry- "Light off"	0.25-2 μM	0.2 µM	5 min	Possible false signals	15
					Unpleasant reagent,	
AuNPs-H ₂ SO ₄	Colorimetry- "Light on"	0.25-2 μΜ	0.14 µM	5 min	Single colorimetric readout	16
AuNPs-2N *a	Colorimetry-	0.2 - 2 μM	0.2 μM	5 min	Laborious surface	
	"Light 0n"				premodification	17
2',7'-dichlorofluorescein	Fluorimetry- "Light on"	0.017-1 μM	0.017µM	4 h	Time consuming	11
RAT *b	Fluorimetry- "Light on"	1.0 -10 μM	0.01µM	—	Complicated synthesis	12
Fluorescein-AuNPs	Fluorimetry- "Light on"	1.0-40 nM	0.09 nM	10 min	Single fluorometric readout	30
	Colorimetry-	0.2-2 μM	0.14 µM		Simplicity, selectivity,	
CDs-AuNPs	"Light on"			6 min	and dual mode	This work
	Fluorimetry-	0.1 - 1.6 µM	0.036 µM		and dual-mode	
	"Light on"	-	•		readout	

*a N, N-dimethyl-1-naphthylamine. *b Rhodamine-thiophene conjugate