

Fig. S1 CVs of GCE (A) and N-GCE (B) using 5.0 mM $\text{Fe}(\text{CN})_6^{4-/3-}$ as a probe in 0.1 M KCl at different scan rates from inner to outer: 10, 30, 50, 70, 90 (mVs⁻¹) (a) and the corresponding linear relationship between anodic peak current and square root of scan rate (b).

Fig. S2 Nyquist plots of GCE and N-GCE in 0.1 M KCl solution using 5 mM $[Fe(CN)_6]^{3-/4-}$ as a probe.

Fig. S3 Time dependence of current response of N-GCE to a mixture of 300 μ M HQ and 300 μ M CC in PBS (0.1M, pH 7.0). N-GCE was stored in PBS (0.1M, pH7.0) at room temperature when it was not in use.

Coexisting substances	Concentration/M	Relative error/%
Na ⁺	3.0×10 ⁻²	1.22
K^+	3.0×10 ⁻²	1.03
Ca^{2+}	3.0×10 ⁻²	1.10
Mg^{2+}	3.0×10 ⁻²	1.05
Fe ²⁺	3.0×10 ⁻²	2.04.
NO_3^-	3.0×10 ⁻²	2.05
$\mathrm{SO}_4{}^{2-}$	3.0×10 ⁻²	2.12
Cl ⁻	3.0×10 ⁻²	2.30
Resorcinol	3.0×10 ⁻⁴	4.54
Phenol	3.0×10-4	3.02
Hydroxybenzonic acid	3.0×10 ⁻⁴	3.41
Hydroxy benzaldehyde	3.0×10 ⁻⁴	1.56
Hydroxybenzyl alcohol	3.0×10 ⁻⁴	2.04
Acetaminophen	3.0×10 ⁻⁴	3.26
Adcorbic acid	3.0×10 ⁻⁴	4.25
Uric acid	3.0×10 ⁻⁴	1.45

Table.S1 Influence of some possible interfering substances on the simultaneous determination of 300 μM HQ and 30 μM CC (n=5)