Supporting Information

Fluorescent and Colorimetric Probe Containing Oxime-Ether for Pd²⁺ in Pure Water and Living

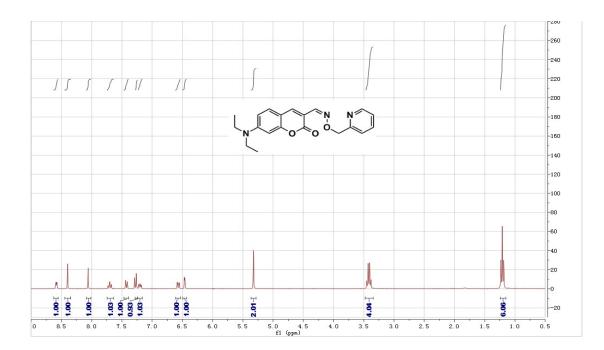
Cells

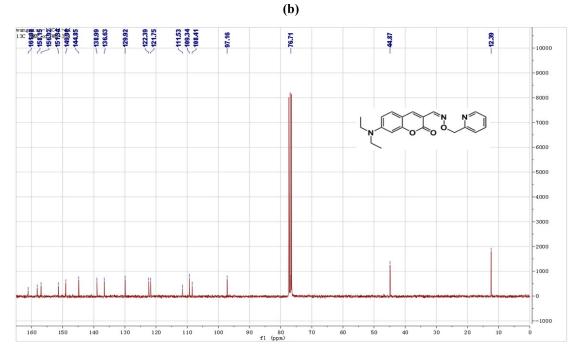
Mian Wang, Yanglei Yuan, Hongmei Wang* and Zhaohai Qin*

Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China.

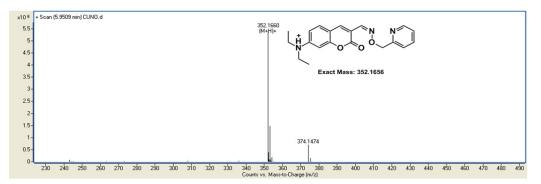
Corresponding author. Tel: +86 10 62736957; Fax: +86 10 62736777; E-mail: whmd@cau.edu.cn and

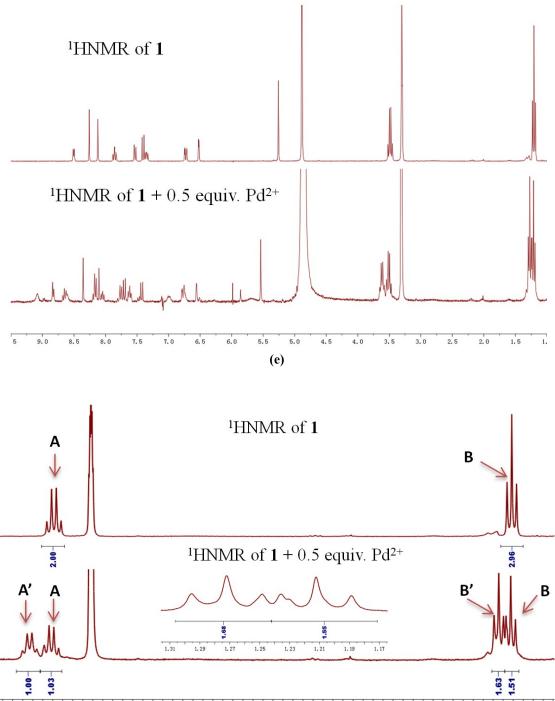
qinzhaohai@263.net

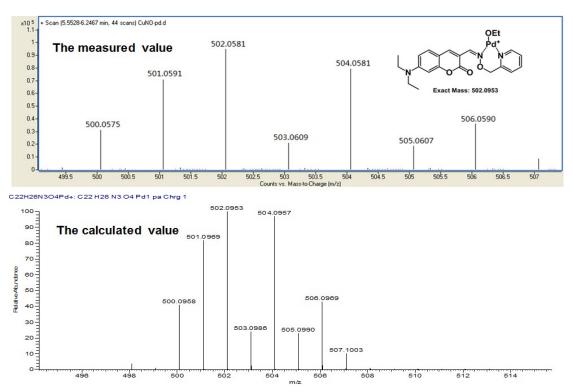

Table of Contents


Page 1	Contents
Page 2	Synthesis procedure of compound 1.
Page 3-5	Fig. S1 ¹ H NMR (a), ¹³ C NMR (b) and HRMS (c) spectra of 1. ¹ H NMR (d, e) and HRMS (f) spectra of $1 + Pd^{2+}$.
Page 6	Fig. S2 The percentage decline in fluorescence intensity at 505 nm of 1 (10.0 μ M) in water solution in response to the presence of Pd ²⁺ (0.0 to 1.5 equiv.).
	Fig. S3 Changes in absorption at 435 nm and 478 nm of a water solution of 1 (10.0 μ M) in response to the presence of Pd ²⁺ (0.0 to 1.2 equiv.).
	Fig. S4 Time-dependent fluorescence intensity changes at 505 nm upon addition of 1.0 equiv. of Pd^{2+} in a water solution of 1 (10.0 μ M).
Page 7	Fig. S5 Fluorescence intensity of 1 (10.0 μ M) at 505 nm in water solution under different pH and further addition of 1.0 equiv. of Pd ²⁺ .
	Fig. S6 Fluorescence images of 1 (10.0 μ M) in water solution after addition of various cations and those after further addition of 1.0 equiv. of Pd ²⁺ (expect Pd ²⁺).
	Fig. S7 Color changes of 1 (10.0 μ M) in water solution after addition of various cations and those after further addition of 1.0 equiv. of Pd ²⁺ (expect Pd ²⁺).
	Fig. S8 Fluorescence spectra changes of 1 (10 μ M) in actual water samples (a: surface water, b: underground water) after addition of 2.0 equiv. of Pd ²⁺ .
Page 8	Fig. S9 Fluorescence spectra of 1 (10 μ M) in water solution after addition of 1.0 equiv. of Pd ²⁺ and further addition of 4.0 equiv. of S ²⁻ and Job's plot of 1 with Pd ²⁺ obtained by UV-Vis and fluorescence emission measurements Fig. S10 Cytotoxicity assays of 1 at different concentrations for Hela cells.

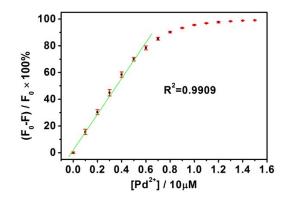
Compound **3** (0.2 g, 0.82 m mol) was dissolved in 10mL EtOH, then K_2CO_3 (0.34 g, 2.5 m mol) and hydroxylamine hydrochloride (0.17 g, 2.4mmol) were added. The mixture was stirred at room temperature for 2 hours and then poured into 50 mL water and extracted with 50 mL EtOAc. After washed with 50mL saturated brine, dried over anhydrous Na₂SO₄, the organic layer was evaporated to give 0.2 g yellow solid in 94 % yield, which was used in the next step without any characterization and purification.

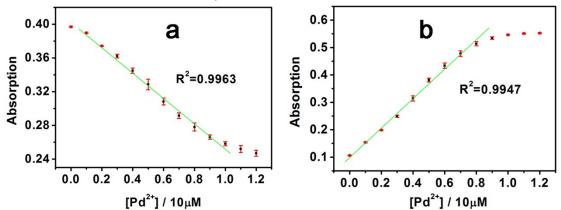

Synthesis of compound 1:


A mixture of compound **2** (0.2 g, 0.77 mmol) , K_2CO_3 (0.33 g, 2.2mmol) and 2-(chloromethyl)pyridine hydrochloride (0.12 g, 0.94 mmol) in 20 mL MeCN was heated under reflux for 3 hours. When the mixture was cooled to room temperature, it was poured into 50 water and extracted with 50 mL EtOAc. After washed with 50 mL saturated brine, dried over anhydrous Na₂SO₄, the organic layer was evaporated and the crude residue was purified by flash chromatography using CH₂Cl₂ as an eluent to give 0.16 g yellow solid in 68 % yield. ¹H NMR (300 MHz, CDCl₃) δ 8.61 (d, J = 4.9 Hz, 1H), 8.42 (s, 1H), 8.08 (s, 1H), 7.73 (td, J = 7.7, 1.8 Hz, 1H), 7.45 (d, J = 7.8 Hz, 1H), 7.31 (dd, J = 8.8, 5.7 Hz, 1H), 7.23 (dd, J = 7.0, 5.5 Hz, 1H), 6.59 (dd, J = 8.9, 2.5 Hz, 1H), 6.49 (d, J = 2.4 Hz, 1H), 5.35 (s, 2H), 3.44 (q, J = 7.1 Hz, 4H), 1.23 (t, J = 7.1 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 161.08, 158.15, 156.92, 151.34, 149.00, 144.85, 138.99, 136.63, 129.92, 122.39, 121.75, 111.53, 109.34, 108.41, 97.16, 76.71, 44.87, 12.39. HRMS calcd for C₂₀H₂₁N₃O₃: [M + H⁺] 352.1660, found 352.1656. MP: 176-177 °C.

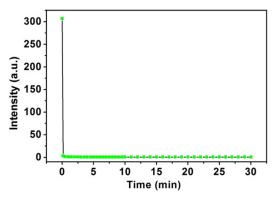

(c)

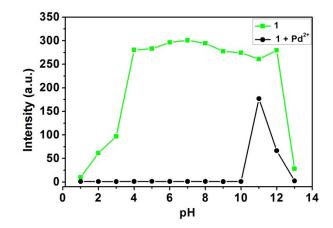
3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.

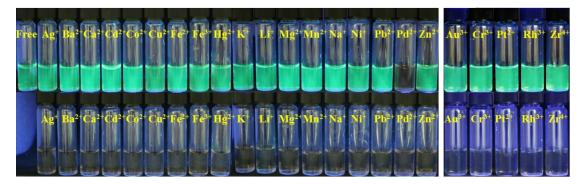

(d)

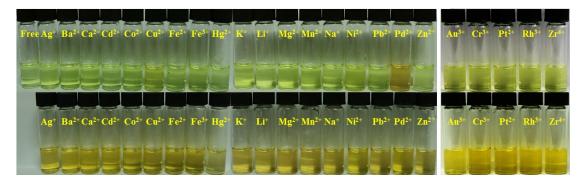

Fig. S1 ¹H NMR (a), ¹³C NMR (b) and HRMS (c) spectra of 1. ¹H NMR (d, e) and HRMS (f) spectra of $1 + Pd^{2+}$.

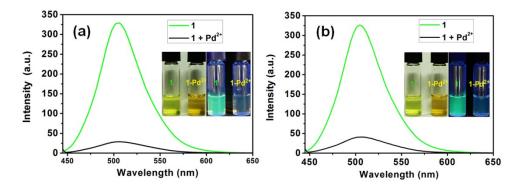
In Figure (e), peak A and peak B represent a methylene group and a methyl group of 1 respectively, peak A' and peak B' represent a methylene group and a methyl group of $1-Pd^{2+}$.

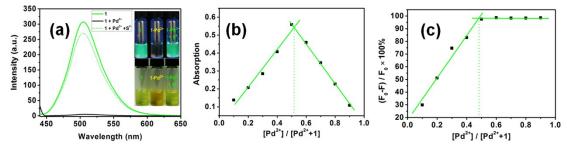

As showed in Figure (d), When the CD₃OD solution of **1** was added by 0.5 equiv. of Pd^{2+} , Compared to the CD₃OD solution of **1** without Pd^{2+} , there are more peaks in the ¹HNMR spectrum of **1** + 0.5 equiv. Pd^{2+} . Owing to electron withdrawing effect of metal ions, there are some peaks move downfield direction in the ¹HNMR spectrum of **1** + 0.5 equiv. Pd^{2+} . Finally, as showed in Figure (e), the integration results show that the molar amount of **1** and **1**- Pd^{2+} is approximately 1: 1 when 0.5 equiv. Pd^{2+} was added to a CD₃OD solution of **1**. In Figure (e), the measured and calculated HRMS spectra show that **1** and Pd^{2+} can form a 1: 1 coordination compound.


Fig. S2 The percentage decline in fluorescence intensity at 505 nm of **1** (10.0 μ M) in water solution in response to the presence of Pd²⁺ (0.0 to 1.5 equiv.), $\lambda_{ex} = 435$ nm, F_0 : the fluorescence intensity at 505 nm of **1** without Pd²⁺, F: the fluorescence intensity at 505 nm of **1** in response to the presence of Pd²⁺. Data are expressed as the mean $\pm 2\sigma$ (" σ " represents the standard deviation of three sets of parallel experiments). The detection limit of **1** for Pd²⁺ is calculated according to the equation: LOD=3 σ /S ("LOD" represents limit of detection, " σ " represents the standard deviation of the 11 blank samples, "S" represents the slope of the linear fitting, In our experiments, $\sigma = 2.568 \times 10^{-3}$, S = 1.408×10⁵, LOD = $3 \times 2.568 \times 10^{-3} / 1.408 \times 10^5 = 5.5 \times 10^{-8}$ M).


Fig. S3 (a) Changes in absorption at 435 nm of a water solution of **1** (10.0 μ M) in response to the presence of Pd²⁺ (0.0 to 1.2 equiv.). (b) Changes in absorption at 478 nm of a water solution of **1** (10.0 μ M) in response to the presence of Pd²⁺ (0.0 to 1.2 equiv.). Data are expressed as the mean $\pm 2\sigma$ (" σ " represents the standard deviation of three sets of parallel experiments).


Fig. S4 Time-dependent fluorescence intensity changes at 505 nm upon addition of 1.0 equiv. of Pd²⁺ in a water solution of 1 (10.0 μ M). λ_{ex} = 435 nm.


Fig. S5 Fluorescence intensity of 1 ($10.0 \,\mu$ M) at 505 nm in water solution under different pH (\blacksquare) and further addition of 1.0 equiv. of Pd²⁺ (\bullet) (pH value of the solution was adjusted by HClO₄ or NaOH), $\lambda_{ex} = 435$ nm.


Fig. S6 Fluorescence images of **1** (10.0 μ M) in water solution after addition of various cations and those after further addition of 1.0 equiv. of Pd²⁺ (expect Pd²⁺). Au³⁺ and Cu²⁺ were added by 2.5 equiv., other competing cations including Ag⁺, Ba²⁺, Ca²⁺, Cd²⁺, Co²⁺, Cr³⁺, Fe²⁺, Fe³⁺, Hg²⁺, K⁺, Li⁺, Mg²⁺, Mn²⁺, Na⁺, Ni⁺, Pb²⁺, Pt²⁺, Rh³⁺, Zn²⁺, Zr⁴⁺ were added by 5.0 equiv.

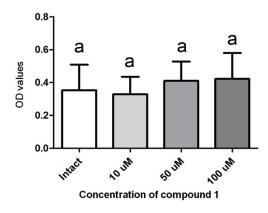

Fig. S7 Color changes of **1** (10.0 μ M) in water solution after addition of various cations and those after further addition of 1.0 equiv. of Pd²⁺ (expect Pd²⁺). Au³⁺ and Cu²⁺ were added by 2.5 equiv., other competing cations including Ag⁺, Ba²⁺, Ca²⁺, Cd²⁺, Co²⁺, Cr³⁺, Fe²⁺, Fe³⁺, Hg²⁺, K⁺, Li⁺, Mg²⁺, Mn²⁺, Na⁺, Ni⁺, Pb²⁺, Pt²⁺, Rh³⁺, Zn²⁺, Zr⁴⁺ were added by 5.0 equiv.

Fig. S8 Fluorescence spectra of **1** (10 μ M) in actual water samples (a: surface water, b: underground water) after addition of 2.0 equiv. of Pd²⁺, $\lambda_{ex} = 435$ nm. Inset: fluorescence and color images of **1** (10 μ M) in actual water samples and those after further addition of 2.0 equiv. of Pd²⁺.(Surface water samples from Fuhai in The Old Summer Palace, underground water from water well in China Agricultural University)

Fig. S9 (a) Fluorescence spectra of 1 (10 μ M) in water solution after addition of 1.0 equiv. of Pd²⁺ and further addition of 4.0 equiv. of S²⁻, $\lambda_{ex} = 435$ nm. Inset: fluorescence and color images of 1, 1 + Pd²⁺ and 1 + Pd²⁺ + S²⁻. (b) Job's plot of 1 with Pd²⁺ obtained by UV-Vis measurements ($\lambda = 478$ nm), the total concentration of 1 and Pd²⁺ is 20 μ M. (c) Job's plot of 1 with Pd²⁺ obtained by fluorescence emission measurements, the total concentration of 1 and Pd²⁺, F: the fluorescence intensity at 505 nm of 1 without Pd²⁺, F: the fluorescence intensity at 505 nm of 1 mithout Pd²⁺, F: the fluorescence intensity at 505 nm of 1 mithout Pd²⁺.

Fig. S10 Cytotoxicity assays of **1** at different concentrations (0 μ M, 10 μ M, 50 μ M, 100 μ M) for Hela cells, values are means + 2 σ (n=3), p > 0.05. The results show that compared to the control group, the effect of **1** on the cells had no significant difference, even the concentration of **1** is 10 times the concentration of intracellular fluorescence imaging experiment.