## **Supporting Information for:**

Carbon quantum dots directly generated from electrochemical oxidation of graphite electrode in alkaline alcohols and the

## applications for specific ferric ion detection and cell imaging

Mengli Liu<sup>1,a</sup>, Yuanhong Xu<sup>1,a</sup>, Fushuang Niu<sup>a</sup>, J. Justin Gooding<sup>b\*</sup>, Jingquan Liu<sup>a\*</sup>

<sup>a</sup> College of Materials Science and Engineering; Laboratory of Fiber Materials and Modern Textile, the

Growing Base for State Key Laboratory; Collaborative Innovation Center for Marine Biomass Fibers,

Materials and Textiles of Shandong Province; Qingdao University, Qingdao 266071, China

<sup>b</sup> School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia

\* Author for Correspondence: Prof. Dr. Jingquan Liu and J. Justin Gooding

E-Mail: jliu@qdu.edu.cn (J.L. Liu) and justin.gooding@unsw.edu.au (J.J. Gooding)

Fax: +86 532 83780128; Tel: +86 532 83780128

<sup>1</sup>Mengli Liu and Yuanhong Xu contribute equally to this work.

## Experimental

Atomic absorption spectrophotometer (AAS) equipped with hollow cathode lamp (HCL) was used for iron determination. The optimum conditions for AAS were applied as follow: wavelength 248.3 nm; HCL current 10 mA; acetylene flow rate 0.5 L/min; air flow rate 4.0 L/min; slit width 0.2 nm.

After the acid pretreatment by hydrochloric acid, iron (Fe<sup>3+</sup>) at different concentrations (0, 10, 20, 30 and 40  $\mu$ M) was spiked into the tap water, respectively. The spiked water samples were determined by AAS method under the above analytical conditions. Concentrations of Fe<sup>3+</sup> were calculated by the standard curve method [S1].



[S1] M. Yaman, G. Kaya, Anal. Chim. Acta., 2005, 540, 77-81.

**Fig. S1** (A, D) TEM and (B, E) HRTEM images as well as (C, F) size distribution of the colourless CQDs obtained from the potentials of 3 V and 7 V, respectively.

| Working                                                      | Electrolyte                                                           | Voltag        | Time     | Quantu  | Advantages and                                                                                                                                                                                   | Reference |
|--------------------------------------------------------------|-----------------------------------------------------------------------|---------------|----------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| electrode                                                    |                                                                       | е             |          | m yield | disadvantages                                                                                                                                                                                    | S         |
| Graphite<br>electrode                                        | NaOH/ ethanol/H <sub>2</sub> O                                        | 5 V           | 3 h      | 10.8 %  | Green, low cost, good<br>reproducibility, but it<br>needed relatively longer                                                                                                                     | this work |
| 3D Graphene                                                  | Ionic liquid (IL)<br>BMIMPF <sub>6</sub> in acetonitrile              | 5 V           | 100 s    | /       | time.<br>Shorter time was<br>required for synthesis,<br>but high-cost carbon                                                                                                                     | 48        |
| Carbon fibers                                                | acetonitrile containing<br>0.1 M<br>tetrabutylammonium<br>perchlorate | 0.5-<br>2.5 V | 2 h      | /       | source was needed.<br>Size-selective<br>preparation of C-dots<br>can be achieved only by<br>adjusting the applied<br>potentials, but the used<br>electrolyte is not                              | 2         |
| Graphite<br>rods                                             | IL [apmim][BF <sub>4</sub> ] and water                                | 12 V          | 4 h      | 11.3 %  | IL functionalized<br>carbon nanodots were<br>synthesized, but the IL is<br>relatively high-cost                                                                                                  | 38        |
| Graphite rods                                                | Ultrapure water                                                       | 15-60<br>V    | 120<br>h | /       | Facile, additive-free, but<br>it needed longer time<br>and higher potentials.                                                                                                                    | 7         |
| Carbon paste<br>electrodes<br>with different<br>compositions | 0.1M NaH <sub>2</sub> PO <sub>4</sub> aqueous solution                | 9 V           | 6 h      | /       | Shifting and non-shifting<br>fluorescence emissions<br>were observed by<br>changing the<br>compositions of the<br>parent<br>Electrodes, but relatively<br>higher voltage and<br>longer time were | 33        |

**Table** S1. Comparison of the working conditions, quantum yield and characteristics of different EC methods for CQDs generation.



Fig. S2 The FTIR spectra for CQDs upon addition with ions of (a)  $Cu^{2+},$  (b)  $Cd^{2+}$  and (c)  $Ni^{2+}.$