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Fig S-12.The distribution of RMSEP from M5 transfer to MP5 with 30 standardization samples 

for ELM-AEs with different hidden nodes numbers and different weights and biases. 
 
 
 

 
Fig S-13.the distribution of RMSEP from MP6 transfer to MP5 with 30 standardization samples 

for ELM-AEs with different hidden nodes numbers and different weights and biases. 
 
 
 
 
 
 



 
 

 

Fig S-14.the distribution of RMSEP of pharmaceutical tablets datasets with 40 standardization 

samples for ELM-AEs with different hidden nodes numbers and different weights and biases. 

5. Optimize the regularization parameter C 

FigS-15 and FigS-16 below show the variation trend of RMSEP with the change of C on corn 

datasets (from MP6 transfer to MP5) and tobacco datasets, with the growth of C, the RMSEP 

value is decrease and trend to be steady. So, for corn and tobacco datasets, we choose 

regularization parameter C as 50000.But for pharmaceutical tablets datasets, from the FigS-17, we 

can find the RMSEP get minimize values when C is 500, so for pharmaceutical tablets datasets, 

we choose regularization parameter C as 500. But for pharmaceutical tablets datasets, the variation 

range of RMSEP on validation set is very small, so even choose regularization parameter C as 

50000, we can still get good performance for TEAM method on independent test set.So for 

suggestion, when use TEAM, the default value of regularization parameter C can be set as 50000. 

But readers can also optimize the regularization parameter C based on the RMSEP value on 

validation set. 
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