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1 Iteratively Re-weighted Least Squares with `p-norm
We have chosen the iteratively re-weighted least squares (IRLS) algorithm1–3 as a method to implement the ILT regularised
by `p-norm with arbitrary p. The penalty function with `p-norm can be described as a pseudo-`2-norm regularization

‖A‖p
`p
= ∑

i
wi · |Ai|2,wi = |Ai|p−2, (SI.1)

and thus the Equation 8. can be written as a least squares problem

min
A≥0
‖ΦA−Ψ‖2

`2
+‖WA‖2

`2
, (SI.2)

where W is the diagonal matrix Wii = τwi. In order to avoid division by zero, the weights are regularised as previously
described1. W depends on A and the problem is solved iteratively with W set in the kth iteration based on A from iteration
k−11. The solution in each iteration takes the following form

A =W−1
Φ
−1 (

ΦW−1
Φ
−1 + I

)−1
Ψ. (SI.3)

2 Matlab Code
2.1 Functions

1 function [NormResiduum, Result,Pnormlist]=TailoredNorm(Decay, K, D_grid,options)
2 %Input:
3 %Decay=the vector of the Diffusion Decay from the PGSE experiment
4 %K vector of k in eq I=exp(-D*k)
5 %D_grid - diffusion scale vector
6 %options.tau - proportion between first and second term
7 %options.epsilon - regularisation of weight to avoid diving by zero
8 %options.no_of_iterations=number of iterations
9 %Output:
10 %NormResiduum - The signal reconstruction residuum for different p.
11 %Result - the matrix of the reconstruction for different p.
12 %List of p
13 if isfield(options,’no_of_iterations’)
14 no_of_iterations = options.no_of_iterations;
15 else
16 no_of_iterations = 1e2;
17 end
18 if isfield(options,’tau’)
19 tau = options.tau;
20 else
21 tau = 2e-6;
22 end
23 if isfield(options,’epsilon’)
24 epsilon = options.epsilon;
25 else
26 epsilon = 1e-2;
27 end
28
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30

31 for i=1:21
32 Pnorm=1+((i-1)/20);
33 Pnormlist(i)=Pnorm;
34 matrix=ILTmatrix(D_grid,K);
35 A=IRLS(no_of_iterations,Decay’,matrix,tau,Pnorm,epsilon);
36 PsiA=matrix*A;
37 NormResiduum(i)=norm(PsiA-Decay’);
38

39 Result(:,i)=A’;
40 end
41 end
42 function [A]=IRLS(no_of_iterations,Decay,matrix,tau,Pnorm,epsilon);
43 ILT=ctranspose(matrix);
44 fn=size(matrix,2);
45 A=ILT*Decay;
46 L=eye(size(matrix,1));
47 k=0;
48 while (k<no_of_iterations)
49 if(Pnorm==0)
50 tau=(k+1)/Niter;
51 W=(1./tau)*diag(abs(A).^(1.+tau*1.)+eps^(1.+tau*1.));
52 elseif(Pnorm==1)
53 W=(1./tau)*diag(abs(A)+eps);
54 else
55 W=(1./tau)*diag(abs(A+eps).^(2.-Pnorm));
56 end
57 G2=matrix*W;
58 B=G2*ILT+L;
59 A=G2’*pinv(B,2e8)*Decay;
60 A(A<0)=0;
61 k=k+1;
62 end
63 end
64 function [matrix]=ILTmatrix(D,K)
65 for i=1:max(size(D))
66 u=0;
67 for j=1:max(size(K))
68 u=u+1;
69 matrix(j,i)=exp(-(D(i))*K(u));
70 end
71 end
72 end

2.2 Example
2.2.1 Input

1 K=[27969939.3652834, 31850023.2544088, 36268365.4068087, 41299634.8157993, 47028858.8081274, 53552859.9867592,
60981892.5111957, 69441505.3680887, 79074664.1210091, 90044166.9964695, 102535396.137508,
116759450.520409, 132956713.480145, 151400915.134930, 172403758.363937, 196320186.516186,
223554381.873686, 254566596.241519, 289880929.100324, 330094184.770193, 375885958.270086,
428030120.321524, 487407895.590545, 555022755.187300, 632017375.103181, 719692947.179286,
819531168.957255, 933219284.036046, 1062678596.11106, 1210096938.57650, 1377965648.41998,
1569121669.25994, 1786795495.05772, 2034665764.74233, 2316921430.38496, 2638332549.55113,
3004330898.20593, 3421101766.51175, 3895688488.84754, 4436111474.58309, 5051503751.20198,
5752265310.42164, 6550238865.72526, 7458909991.56866, 8493635026.56977, 9671900592.19377,
11013619112.7413, 12541465330.8620, 14281259505.6288, 16262403769.1372, 18518379015.9553,
21087310722.7473, 24012613260.2947, 27343723586.6444, 31136936720.6321, 35456357115.1003,
40374982007.7996, 45975935058.3678, 52353871119.5689, 59616575883.1166, 67886787433.7365,
77304270495.3216, 88028178423.4806, 100239742861.620];

2 Decay=[83404.0250362637, 83370.4506110911, 83414.2624602818, 83388.1520260110, 83304.3180159704,
83243.6787060199, 83266.1546335731, 83173.5537480279, 83097.7778532905, 83073.3193017468,
82949.3092563797, 82867.8989459299, 82812.0302292043, 82735.4195567696, 82549.7746801276,
82406.5856119987, 82238.7428236193, 82121.2059939558, 81913.6666997866, 81693.1048290188,
81380.3073543495, 81113.5839397958, 80730.0865341128, 80355.2098122292, 79945.3149460123,
79470.9537684617, 78891.9542316392, 78327.3319010280, 77623.2533430469, 76847.2101863967,
76014.4953412066, 74977.0495917831, 73939.0503716736, 72753.3251709937, 71379.0586581385,
69883.7855109229, 68258.5820909276, 66481.5549042536, 64566.1430687698, 62453.4587668726,
60184.5552300506, 57764.2266509588, 55151.9222561379, 52356.4896937735, 49459.5467690467,
46415.9046967481, 43304.1816497189, 40046.6076481351, 36774.7720285385, 33494.2954637877,
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30222.6859124238, 26960.5773408252, 23845.5492726671, 20890.9059669158, 18101.3940385555,
15414.2930568451, 13032.9057574235, 10800.9105006795, 8855.07954389013, 7198.32791408085,
5748.46760777400, 4492.65667480655, 3467.55054003967, 2632.90241791157];

3 options.tau=1e-7;
4 options.epsilon=1e-3;
5 no_of_iterations=1e2;
6 D_grid=logspace(-13,-8,512);
7 [NormResiduum, Result, Pnormlist]=TailoredNorm(Decay, K, D_grid, options);
8 subplot(2, 1, 1)
9 semilogy(Pnormlist, NormResiduum)
10 title(’Residuum’)
11 xlabel(’p’)
12 [minimuum, index]=min(NormResiduum);
13 subplot(2, 1, 2)
14 semilogx(D_grid, Result(:,index))
15 title(’Reconstruction’)
16 xlabel(’D [m2/s]’)

2.2.2 Output
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3 Robustness to (mis)setting of τ
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Fig. SI.1 Test of the robustness to the (mis)setting of τ. Upper panels show the residuum and the corresponding A(D) reconstructed with optimal
norm is found below. Solid line - reconstruction with optimal `p-norm, dashed line - simulated profile.

Fig. SI.2 Behavior of `2-norm regularisation with different values of τ for peaks of different polydispersity. As mentioned in main text, the `2-norm
regularisation with choosing optimal τ is not efficient for narrow diffusion peaks and over-smooths them. This can be explained by inherent smoothing
features of `p-norms (p > 1) - see below.
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4 Non-unimodal/asymmetric distributions
We compared the Tailored Norm regularisation with Trust-Region Algorithm for the Inversion (TRAIn)4. The authors
of TRAIn claim that the algorithm is specially suited for non-symmetrical distribution of diffusion coefficient. We have
compared the simulated datasets with different asymmetrical distributions (Fig. SI.3) and with bimodal distributions (Fig.
SI.4). Additionally, we compared the TRAIn reconstruction with our method for the case of heparin depolymerisation
monitoring (Fig. SI.5). For the simulation we have used the MATLAB code of TRAIn taken from the Supporting Information
of the publication that introduced the method4. All parameters were set to the values recommended by the authors.

The analysis of the results shows that Tailored Norm reconstructs the asymmetrical distributions equally good as TRAIn.
Additionally, it is less vulnerable to noise. As for the bimodal distributions the Tailored Norm fails in the situation of two
peaks with distinctively different polydispersity, as it cannot find the p that will be optimal for both peaks. It is worth
mentioning that TRAIn method reconstructs such distribution very well, but only in the noiseless case. In case of the
heparin degradation studies the noise vulnerability of the TRAIn method is even more evident (Figure SI.5).

Fig. SI.3 Comparison of Tailored Norm (yellow) and TRAIn (green) on simulations of asymmetrical distributions. Reference is shown in cyan. Each
simulation is based on equally spaced 4 Gaussian peaks in the intensity ratio: 4:3:2:1. The distance between the peaks is increasing linearity with the
simulation’s number. For each simulation the reconstruction of the noiseless signal and signal with addition of white noise at the level of 0.1% of the
first data point was performed.
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Fig. SI.4 Comparison of Tailored Norm (red-dotted) and TRAIn (green) on simulations of bimodal distributions. Reference is shown in cyan A- Two
peaks with σ1 = 0.2 and σ2 = 0.2 centered at D1 = 10−10.75 m2

s and D2 = 10−9.25 m2

s B- Two peaks with σ1 = 0.1 and σ2 = 0.2 centered at D1 = 10−10.75 m2

s

and D2 = 10−9.25 m2

s C- Two peaks with σ1 = 0.2 σ2 = 0.4 and centered at D1 = 10−10.75 m2

s and D2 = 10−9.25 m2

s For each simulation the reconstruction of
the noiseless signal and signal with addition of white noise at the level of 0.1% of the first data point was performed.

Fig. SI.5 Comparison of results of heparin degradation monitoring using Tailored Norm (green) and TRAIn (blue)
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5 Smoothing features of `p-norms (p > 1)
The proposed method is using the regularisation term de-
fined as

Θ(A) = ‖A‖`p , (SI.4)

where 1 ≤ p ≤ 2 and the algorithm seeks for the following
minimum

min
A≥0
||ΦA−Ψ||2`2

+ τ||A||`p . (SI.5)

The solution might be any discrete function A, i.e. a
vector in V = RN space, where the dimension N is equal to
the cardinality of the support of A. We note that Res(A) =
||ΦA−Ψ||2`2

is a real-valued function of RN . Then, we as-
sume that Mc ⊂ V is the surface given by Res(A)− c = 0
for any arbitrary c ∈ R. If we restrict our consideration of
minimizing function SI.5 only to the surface Mc, it is clear
that our solution provides the minimal `p-norm among all
points in Mc. Therefore the optimisation of p is straight-
forward and will further be illustrated with the following
example. To start with, we consider the following vector

v = (1,ε), (SI.6)

where ε is very small positive number. Now, consider
the perturbations of this vector by δ > 0 and the associated
change of its norm.

||v1||2`2
=||(1−δ ,ε)||2`2

= 1−2δ +δ
2 + ε

2 (SI.7)

||v2||2`2
=||(1,ε−δ )||2`2

= 1+δ
2−2εδ + ε

2. (SI.8)

Accordingly, the norm in equation SI.7 is less then the
norm in SI.8. Hence, if the two vectors v1,v2 have a simi-
lar residuum, the algorithm will prefer vector v1. In other
words, the solution will be over-smoothed, i.e. the values
of the elements of the solution vector v1 differ less com-
pared to v. In contrast, the `1-norm regularisation avoids
over-smoothed solutions. Moreover, the `1 space is not
strictly convex and in many cases, its geometry enforces
sparse solutions. Between the `1-norm and `2-norm, there
is a whole continuum of norms. A similar approach shows
that larger p values produce more smoothed solutions.

6 1H spectra of PEO polymers and heparin

Fig. SI.6 1H spectrum of PEO polymers.
Highlighted is the peak from polymer.
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Fig. SI.7 1H spectra of Heparin at the begining (lower) and at the end
(upper) of the reaction. Highlighted are the regions used for the analysis
of reaction. The spectra are extracted from the moving-frame dataset
and correspond to different gradients, which explains difference in S/N
ratio.
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