Supplementary Information

Simultaneous detection of single-nucleotide polymorphisms in a DNA bulge structure using fluorine-modified bisbenzimide derivative

Takashi Sakamoto,** Daisaku Hasegawa* and Kenzo Fujimoto***.

^aSchool of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahi-dai, Nomi, Ishikawa 923-1292, Japan

Contents

1.	Experimental Procedures	S2
2.	Supporting Table and Figures	S3

1. Experimental Procedures

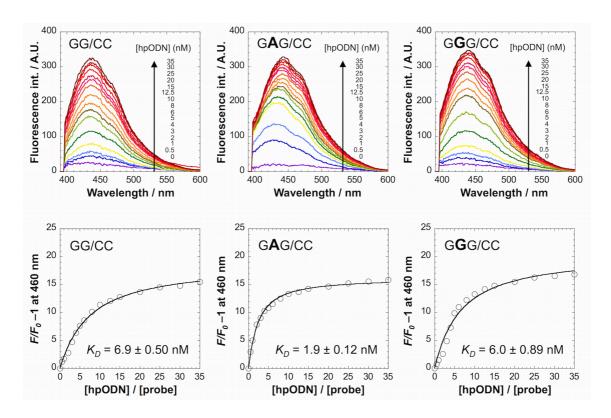
ODNs and other reagents: All oligodeoxyribonucleotides were purchased from Fasmac (Japan). 3,5-Bis(trifluoromethyl)benzene-modified bisbenzimide H33258 was prepared according to a literature method.¹ Other reagents were purchased from Sigma-Aldrich (CA), Wako Pure Chemical Industry (Osaka, Japan) or TCI (Tokyo, Japan).

¹⁹F NMR measurement: ¹⁹F NMR spectra were recorded using AVANCE III 500 MHz NMR spectrometer (Bruker Biospin) equipped with a 5 mm probe head (PA BBO 500S2 BBF-H-D-05 Z, Bruker Biospin) at 470 MHz for ¹⁹F. The chemical shifts were corrected using TFA (–75.6 ppm) as an internal standard.

Fluorescence measurement: Fluorescence spectra were recorded using FP-6500 spectrofluorophotometer (JASCO, Tokyo, Japn) with excitation at 345 nm.

Reversed-phase ultra-high performance liquid chromatographic analysis: 2'-Deoxyribonucleosides (50 μ M aq. soln.; 15 μ L) were analyzed with a UPLC system (Aquity, Waters) equipped with BEH Shield RP18 column (1.7 μ m, 2.1 \times 50 mm, elution was with 0.05 M ammonium formate containing 0 to 0.5% CH₃CN, linear gradient (8 min) at a flow rate of 0.2 mL/min, 60 °C). UV absorbance chromatograms were recorded at wavelength of 260 nm.

Evaluation of partition coefficient (P_{OW}): A solution of 2'-deoxyribonucleosides (200 μ M in 50 mm Tris-HCl (pH 7.6) containing 100 mM NaCl; 2 mL) was mixed with 1-octanol (2 mL) that was presaturated with same buffer in a sample tube. After shaking 100 times at room temperature, the tube was centrifuged (1500 rpm, 5 min). UV absorbance at 260 nm of the aqueous layer was measured by spectrophotometer (V-630bio, JASCO) and P_{OW} was calculated with the equation below;


$$P_{\text{OW}} = (A_0 - A_1) / A_0$$

where, A_0 and A_1 is the absorbance at 260 nm of the nucleoside solution before and after octanol treatment, respectively.

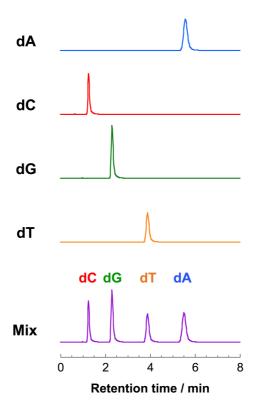

2. Supporting Table and Figures

Table 1. Octanol-water partition coefficients ($P_{\rm OW}$) of 2'-deoxyribonucleosides

	P_{OW}
dC	0.035
dG	0.044
dT	0.076
dA	0.236

Fig. S1 Fluorescence spectra and fluorescence titration curves of the probe versus hpODNs. [probe] = 1 nM in 50 mM Tris-HCl (pH 7.6) containing 100 mM NaCl. Measurements were performed at 25°C. Fluorescence intensity at 460 nm was used for preparing titration curves and K_D values were calculated with non-linear least square fitting.

Fig. S2 Reversed-phase ultra-high performance liquid chromatographic analysis of 2'-deoxyribonucleosides. Aqueous solutions of 2'-deoxyribonucleosides (50 μ M each) were subjected to the analysis.

References

1. T. Sakamoto, D. Hasegawa and K. Fujimoto, Chem. Commun., 2015, 51, 8749.