## **Electronic Supplementary Information (ESI)**

## Highly selective detection of 2,4,6-trinitrophenol by using newly developed terbium-doped blue carbon dots

Bin Bin Chen<sup>a</sup>, Ze Xi Liu<sup>b</sup>, Hong Yan Zou<sup>b</sup> and Cheng Zhi Huang\*ab

<sup>a</sup> Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University),

Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University,

Chongqing 400715, China. E-mail: chengzhi@swu.edu.cn, Tel: (+86) 23 68254059, Fax: (+86)

## 23 68367257

<sup>b</sup> Chongqing Key Laboratory of Biomedical Analysis (Southwest University), Chongqing Science & Technology Commission, College of Pharmaceutical Science, Southwest University, Chongqing 400716, China



**Fig. S1** The preparation of Tb-CDs by using different Tb salts. (a)  $TbCl_3$  (Inset: Tb-CDs solution under the 365 nm UV lights lamp); (b)  $Tb_2(SO_4)_3$  (Inset: Tb-CDs solution under the 365 nm UV lights lamp).



Fig.S2 The emission spectrum of Tb-CDs.



Fig.S3 The EDX analysis of Tb-CDs.



**Fig.S4** The stability investigation of the as-prepared Tb-CDs. (a) The stability in a salty medium; (b) the antioxidant capacity of Tb-CDs.  $C_{\text{Tb-CDs}}$ , 0.4 mg/ml.

| pН   | Zeta potential (mV) |
|------|---------------------|
| 1.81 | 23.5                |
| 2.21 | 16.2                |
| 3.23 | 1.8                 |
| 4.10 | -7.5                |
| 5.02 | -19.5               |
| 6.10 | -22.5               |
| 7.00 | -27.0               |

**Table. S1** Zeta potentials vary from different pH value.



Fig.S5 The UV-Vis absorption spectra of TNP in the absence and presence of Tb-CDs.



**Fig.S6** Selective detection of the Tb-CDs for TNP in BR buffer (pH 7.0). Fluorescence responses of the Tb-CDs in the presence (a) and absence (b) of 75  $\mu$ M TNP. The concentration of metal ions was 100  $\mu$ M.



**Fig.S7** Fluorescence responses of the Tb-CDs in the absence (a) and presence (b) of 75  $\mu$ M TNP.  $C_{\text{Fe}}^{3+}$ , 100 $\mu$ M;  $C_{\text{sodium oyrophosphate}}$ , 1mM.



**Fig.S8** The UV-Vis absorption spectra of all nitroaromatic explosives and the fluorescence excitation and emission spectra of Tb-CDs.



**Fig.S9** Cyclic voltammograms of the Tb-CDs in the solution state. The HOMO and LUMO energy levels of Tb-CDs could be estimated according to the empirical formula:

$$E_{\text{HOMO}} = -e(E_{\text{ox}} + 4.4)$$
$$E_{\text{LUMO}} = -e(E_{\text{red}} + 4.4)$$

Where  $E_{ox}$  and  $E_{red}$  are the onset of oxidation and reduction potential for Tb-CDs, respectively. The  $E_{red}$  was determined to be -0.51 V. The corresponding  $E_{LUMO}$  was calculated to be -3.89 eV. However, the HOMO energy could not be obtained due to the irreversible of the oxidation behavior. To determine the HOMO levels, we combined the  $E_{red}$  with the optical energy band gap ( $E_g$ , resulting from the absorption edge in the absorption spectrum):

$$E_{\rm HOMO} = E_{\rm LUMO} - E_{\rm g}^{40}$$

 $E_{\rm g}$  was estimated to be 4.42 eV. So, the  $E_{\rm HOMO}$  was calculated to be -8.31 eV.

| Methods                                                               | Linear detection range | Detection limit           | Reference |
|-----------------------------------------------------------------------|------------------------|---------------------------|-----------|
| Colorimetric<br>method with<br>π-stacked<br>organic crystalline solid | /                      | 15.2 μΜ                   | 1         |
| Fluorescent method<br>with cadmium–pamoate<br>metal–organic framework | 0.76-11.5 ppm          | 1.76×10 <sup>-8</sup> g/L | 2         |
| Fluorescent method<br>with metal-organic<br>framework                 | 10-400 ppm             | /                         | 3         |
| Fluorescent method<br>with photoluminescent<br>carbon nanodots        | 0.08-100µM             | 22 nM                     | 4         |
| Colorimetric method with<br>Redox-Switchable<br>Copper(I) Metallogel  | /                      | 50 µM                     | 5         |
| Fluorescent method<br>with graphene quantum<br>dots                   | 1-60 μM                | 0.3 µM                    | 6         |
| Fluorescent method<br>with Graphitic Carbon<br>Nitride Nanosheets     | 0-0.5 μM<br>0.5-10 μM  | 8.2 nM                    | 7         |
| Fluorescent method with DAP-RGO                                       | /                      | 125 nM                    | 8         |
| Fluorescent method with Tb-CDs                                        | 500nM-100µM            | 0.2 μΜ                    | This work |

| <b>Table.</b> S2 The comparison of the determination of | TNP |
|---------------------------------------------------------|-----|
|---------------------------------------------------------|-----|

## REFERENCES

(1) S. Mukherjee, A. V. Desai, A. I. Inamdar, B. Manna and S. K. Ghosh, *Cryst. Growth Des.*, 2015, **15**, 3493-3497.

(2) D. J. Ye, L. Zhao, R. F. Bogale, Y. Gao, X. Wang, X. Qian, S. Guo, P. J. Zhao and P. G. Ning, *Chem. Eur. J*, 2015, **21**, 2029–2037.

(3) S. R. Zhang, D. Y. Du, J. S. Qin, S. J. Bao, S. L. Li, W. W. He, Y. Q. Lan, P. Shen and Z. M. Su, *Chem. Eur. J.*, 2014, 20, 3589–3594.

(4) X. Deng and D. Wu, RSC Adv., 2014, 4, 42066-42070.

(5) S. Sarkar, S. Dutta, S. Chakrabarti, P. Bairi and T. Pal, ACS Appl. Mater. *interfaces*, 2014, **6**, 6308-6316.

(6) L. Lin, M. Rong, S. Lu, X. Song, Y. Zhong, J. Yan, Y. Wang and X. Chen, *Nanoscale*, 2015, 7, 1872-1878.

(7) M. Rong, L. Lin, X. Song, T. Zhao, Y. Zhong, J. Yan, Y. Wang and X. Chen, *Anal. Chem.*, 2015, **87**, 1288-1296.

(8) D. Dinda, A. Gupta, B. K. Shaw, S. Sadhu and S. K. Saha, *Appl. Mater. interfaces*, 2014, **6**, 10722-10728.