## Supplementary information

# Automated Analysis of Food-borne Pathogens using a Novel Microbial Cell Culture, Sensing and Classification System 

Kun Xiang ${ }^{\text {a }}$, Yinglei Li ${ }^{\text {b }}$, William Ford ${ }^{\text {b }}$, Walker Land ${ }^{\text {b }}$, David Schaffer ${ }^{\text {b }}$, Robert Congdon ${ }^{\text {a }}$, Omowunmi Sadik ${ }^{\text {a* }}$

${ }^{a}$ Center for Advanced Sensors \& Environmental Systems (CASE)<br>Department of Chemistry<br>State University of New York at Binghamton<br>P.O Box 6000<br>Binghamton, NY, 13902

${ }^{\mathrm{b}}$ Department of Biomedical Engineering, State University of New York at Binghamton
P.O Box 6000

Binghamton, NY, 13902

* Corresponding author: osadik@binghamton.edu


Figure S-1. (A) Sensor platform designs, reticulated vitreous carbons (RVC) applied as working electrodes, Aluminum forms served as counter electrodes. (B) Working electrode, RVC, with biofilm adhered. (C) Applied potential in DPV: the upside arrows indicate the voltages prior to the pulse. The downside arrows indicate the voltages after the pulse. Different colors indicate different pairs. 0.022 V is the voltage difference between $1 \& 2$ and, $3 \& 4$ respectively; 0.002 V is the voltage difference between $1 \& 3$ and $2 \& 4$ respectively.


Figure S-2. Kinetic analysis of oxygen peak areas: (A) EC\#11775, third order reaction fitting; (B) EC\#25922, third order reaction fitting; (C) SE\#12228, first order reaction fitting.

Table S-1 Quality control criteria used for data analysis and database development

| Parameter | Criteria | Rationale |
| :--- | :--- | :--- |
| The sum of squared error to <br> the $6^{\text {th }}$ order polynomial <br> equation | Reject a curve whose sum is <br> higher than $10^{-6}$ | Rule out noisy curves |
| Maximum delta current ( $\delta \mathrm{i})$ | Reject a curve with all di lower <br> than $10^{-5} \mathrm{~A}$ | Rule out low flat curves which <br> cannot be analyzed. |
| Number of rejected DPV <br> curve in a whole data set | Reject a data set contains more <br> than three rejected DPV curves | Rule out data sets have too <br> many error cannot be <br> classified |
| Initial oxygen peak value | Reject data sets with initial <br> oxygen peak lower than $10^{-4} \mathrm{~A}$ | Rule out low initial oxygen <br> samples |

Table S-2 Features extraction. Thirty two features derived from the DPV measurements used in AMC ${ }^{3}$. Features 1
to 16 was based on oxygen peak area vs time curves; Features 17 to 32 were based on pathogen peak area vs. time
curves.

| Feature number | Description of features |
| :---: | :---: |
| Feature 1 | The oxygen peak area value of the initial point |
| Feature 2 | Variance of the whole oxygen peak area vs time curve |
| Feature 3 | The hour when the transition point occurred in the oxygen peak area vs time curve |
| Feature 4 | Variance of the flat region in the oxygen peak area vs time curve |
| Feature 5 | Slope of linear regression, for oxygen peak area vs time curve |
| Feature 6 | Intercept of linear regression, for oxygen peak area vs time curve |
| Feature 7 | Standard error of linear regression, for oxygen peak area vs time curve |
| Feature 8 | Polynomial coefficient of $x^{2}$ of $2^{\text {nd }}$ order polynomial, for oxygen peak area vs time curve |
| Feature 9 | Polynomial coefficient of x of $2^{\text {nd }}$ order polynomial, for oxygen peak area vs time curve |
| Feature 10 | Intercept of $2^{\text {nd }}$ order polynomial, for oxygen peak area vs time curve |
| Feature 11 | Standard error of $2^{\text {nd }}$ order polynomial, for oxygen peak area vs time curve |
| Feature 12 | Polynomial coefficient of $x^{3}$ of $3^{\text {rd }}$ order polynomial, for oxygen peak area vs time curve |
| Feature 13 | Polynomial coefficient of $x^{2}$ of $3^{\text {rd }}$ order polynomial, for oxygen peak area vs time curve |
| Feature 14 | Polynomial coefficient of $x$ of $3^{\text {rd }}$ order polynomial, for oxygen peak area vs time curve |
| Feature 15 | Intercept of $3^{\text {rd }}$ order polynomial, for oxygen peak area vs time curve |
| Feature 16 | Standard error of $3^{\text {rd }}$ order polynomial, for oxygen peak area vs time curve |
| Feature 17 | The pathogen peak area value of the initial point |
| Feature 18 | Variance of the whole pathogen peak area vs time curve |
| Feature 19 | The hour when the transition point occurred in the pathogen peak area vs time curve |
| Feature 20 | Variance of the flat region in the pathogen peak area vs time curve |
| Feature 21 | Slope of linear regression, for pathogen peak area vs time |


|  | curve |
| :---: | :---: |
| Feature 22 | Intercept of linear regression, for pathogen peak area vs time curve |
| Feature 23 | Standard error of linear regression, for pathogen peak area vs time curve |
| Feature 24 | Polynomial coefficient of $x^{2}$ of $2^{\text {nd }}$ order polynomial, for pathogen peak area vs time curve |
| Feature 25 | Polynomial coefficient of $x$ of $2^{\text {nd }}$ order polynomial, for pathogen peak area vs time curve |
| Feature 26 | Intercept of $2^{\text {nd }}$ order polynomial, for pathogen peak area vs time curve |
| Feature 27 | Standard error of $2^{\text {nd }}$ order polynomial, for pathogen peak area vs time curve |
| Feature 28 | Polynomial coefficient of $x^{3}$ of $3^{\text {rd }}$ order polynomial, for pathogen peak area vs time curve |
| Feature 29 | Polynomial coefficient of $x^{2}$ of $3^{\text {rd }}$ order polynomial, for pathogen peak area vs time curve |
| Feature 30 | Polynomial coefficient of x of $3^{\text {rd }}$ order polynomial, for pathogen peak area vs time curve |
| Feature 31 | Intercept of $3^{\text {rd }}$ order polynomial, for pathogen peak area vs time curve |
| Feature 32 | Standard error of $3^{\text {rd }}$ order polynomial, for pathogen peak area vs time curve |

