Synthesis of "amphiphilic" carbon dots and their applications

for the analysis of iodine species (I₂, I⁻ and IO₃⁻) in high saline

water

Meina Wang,^a Baozhan Zheng,^{*a} Feng Yang,^a Juan Du,^a Yong Guo,^a Jianyuan Dai,^a Lei Yan,^c Dan Xiao^{*a,b}

^a Department of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064,

China.

^b Department of Chemical Engineering, Sichuan University, No. 29 Wangjiang Road, Chengdu

610064, China.

^c School of Criminal Investigation, Southwest University of Political Science and Law, No. 301,

Baosheng Ave, Yubei District, Chongqing401120, China.

* Corresponding author: xiaodan@scu.edu.cn (D. Xiao); zhengbaozhan@scu.edu.cn (B. Z. Zheng).

Fig. S1 The 1H NMR spectrum of A-CDs.

Fig. S2 The XPS spectrum of A-CDs.

Fig.S3 The response of A-CDs to 29 kinds of ions (from left to right: Ag⁺, Al³⁺, Ba²⁺, Ca²⁺, Cd²⁺, Co²⁺, Cr³⁺, Cu²⁺, Fe³⁺, K⁺, Hg²⁺, Mg²⁺, Mn²⁺, Ni²⁺, Pb²⁺, Zn²⁺, F⁻, Cl⁻, Br⁻, S²⁻, ClO₄⁻, SO₄²⁻, NO₃⁻, NO₂⁻, C₆H₅O₇³⁻, CH₃COO⁻, IO₃⁻, I⁻, I₂).

Fig.S4 Fluorescence intensity of A-CDs changes before (curve a) and after (curve b) adding I_{2} , and the fluorescence recovery after the addition of excess Na_2SO_3 (curve c).

Fig.S5 The influence of Na_2SO_3 (A) and H_2O_2 (B) on the fluorescence intensity of A-CDs. ([Na_2SO_3] =0.5 mM; [H_2O_2] =50 mM).

Fig.S6 (A) The fluorescence spectra changes of A-CDs upon the addition of IO_3^- (80 nM-20 μ M) in aqueous solution with an excitation at 360 nm at pH=1.0; (B) show the plots of relative fluorescence $(I_0-I)/I_0$ versus the concentration of IO_3^- (Error bars, SD, n=3).

Fig.S7 The fluorescence lifetime of A-CDs before (A) and after (B) the presence of I2.

Fig.S8 The fluorescence intensity changes of A-CDs after the addition of excess I⁻ into the system of A-CDs-I₂

Fig.S9 The response of hydrophilic carbon dots to I_2 , the carbon dots was synthesized from sucrose,¹ and only with hydrophilic groups (-OH and -COOH) on the surface. A, B and C refer to the response of hydrophilic carbon dots to I_2 , I⁻ and IO₃⁻ (10⁻⁵ M), respectively; blue and red columns are fluorescence signal changes before and after the addition of I_2 , I⁻ and IO₃⁻ in the system, respectively.

Fig.S10 The fluorescent spectrum of A-CDs (black curve), A-CDs with Br_2 present (red curve), A-CDs with Br_2 and Na_2SO_3 present (blue curve), A-CDs with Br_2 , Na_2SO_3 and H_2O_2 present (green curve). The concentration of Br_2 is 10^{-5} M.

Fig.S11 (A) The fluorescence recovery of A-CDs with time extension with the present of I_2 in the system; (B) the measurement of I⁻ in the system with iodide ion selective electrode.

рН	1.0	2.0	4.0	7.0	10.0
Zeta potential (mV)	24.9	48.1	46.9	29.9	15.7

Table S1. The zeta potentials of A-CDs in water at different pH.

Co	oncentration	Zeta potential (mV)	
	10 mM	29.3	
Na ₂ SO ₃	5 mM	26.8	
	1 mM	22.5	
	0.1 M	23.8	
H_2O_2	0.05 M	23.2	
	0.01 M	24.1	

Table S2. The zeta potentials of A-CDs in water with the presence of Na₂SO₃ and H₂O₂ (pH=1).

Table S3. Determination of iodine in brine water, urine and edible saltsamples

Samples	Measuringiodi	Spiked	Found(mg/L)	Recovery	Iodine content	Standard range
	ne (mg/L)	(mg/L)	(n=3)	(%)	of stock solution	
	(n=3)					
Brine water	0.337±0.001	0.127	0.462±0.005	98	1.35mg/L	1.2-1.6 mg/L ^a
Urine	0.130±0.003	0.127	0.258±0.002	101	0.130 mg/L	100-200 µg/L ^b
Edible salt	0.261±0.001	0.127	0.389±0.003	101	26.1mg/kg	21-39 mg/kg ^c

^a The data from Jinlu Corporation Ltd., Sichuan, China.

^b For a healthy human being, urinary iodide should be in the range of 100-200μg/L according to the WHO.

^c Iodine content of the standard range of products.

References:

1. S. Chandra, P. Das, S. Bag, Laha, D. and P. Pramanik, *Nanoscale*, 2011, 3, 1533.