Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2015

Quantitative analysis of nitro-polycyclic aromatic hydrocarbons in PM_{2.5} samples with graphene as a matrix by MALDI-TOF MS

Nengxuan Ma^{a,b}, Wei Bian^a, Ruijin Li^a, Hong Geng^a, Jiangang Zhang^a, Chuan Dong^a, Shaomin Shuang^{*a}, Zongwei Cai^{*b}

^aInstitute of Environmental Science; Department of Chemistry, Shanxi University, Taiyuan 030006, P.R. China

^bState Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China

Supplementary Information

Synthesis of 9-nitroanthracene- d_9

0.9411 g of powered anthracene- d_{10} and 5mL of glacial acid were added into a 50 mL three-necked round-bottomed flask with a 25 mL dropping funnel and an electromagnetic stirrer. The flask was immersed in a water bath at 20-25°C, and 0.45 mL of concentrated nitric acid (70 % by weight) was added slowly from the dropping funnel with stirring vigorously. The rate of addition was controlled and the reaction temperature did not exceed 30 °C. After all of nitric acid has been added, the mixture was stirred until a clear solution was obtained, then stirring was continued for 1 h. The solution was filtered to remove unreacted anthracene- d_{10} , and a mixture of 3 mL of concentrated hydrochloric acid (37 % by weight) and 3 mL of glacial acetic acid was added dropwise to the filtrate with vigorous stirring. The pale-yellow precipitate which forms was separated by suction filtration on a sintered-glass funnel and was washed with a small amount of glacial acetic acid. The obtained orange compound was removed from the funnel and triturated thoroughly with 20 mL of warm (>60 °C) 10 % sodium hydroxide solution. The product was separated from the warm slurry by suction filtration and was finally washed thoroughly with warm water (>60 °C) until the washings were neutral The crude 9-nitroanthracene- d_9 was dried and recrystallized from glacial acetic acid.

Characterization of 9-nitroanthracene-d₉

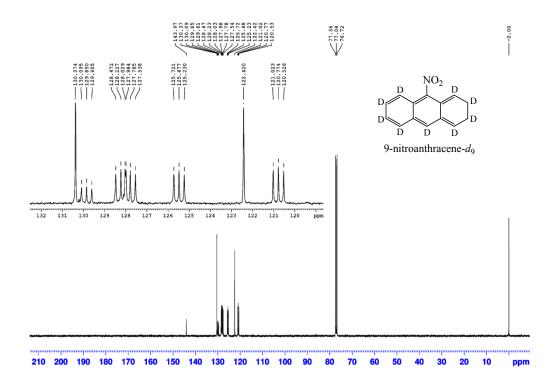


Fig. 1 ¹³CNMR chart of 9-nitroanthracene-*d*₉(CDCl₃,400 MHz)

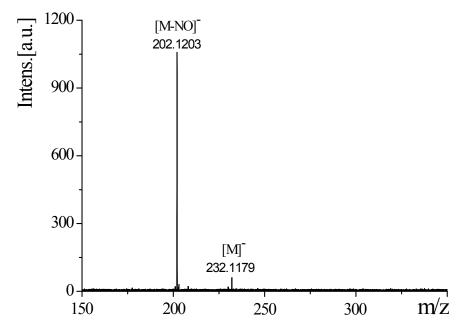


Fig. 2 MALDI-TOF MS chart of 9-nitroanthracene-d₉

Table S1. The linear response ranges and detection limits of 1-NP from different analytical methods.

Quantified compound name	Detection method	Linear ranges	LOD	Reference
1-NP	HPLC-FL	0.01-7μg/mL	2.20pg	49
1-NP	HPLC-MS	0.01-10ng/mL	0.001ng	67
1-NP	GC-EI/MS	200-1000ng/mL	200pg	68
1-NP	GC-NCI/MS	1-50ng/mL	0.1pg	16
1-NP	MALDI-TOFMS	$0.005\text{-}0.5\mu\text{g}/\mu\text{L}$	$0.74 \text{ng}/\mu L$	This work*

^{*} MALDI-TOF MS instrument detection limit.