Supplementary Information for

Quantitative detection of hydroxyl radicals in Fenton system by UV-Vis spectrophotometry

Haiqian Zhao, ^{a,b} Jihui Gao, ^{*a} Wei Zhou, ^a Zhonghua Wang^b and Shaohua Wu^a

^a School of Energy Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.

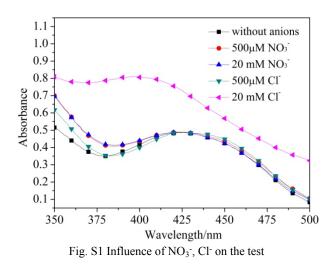
^b School of Civil Engineering & Architecture, Northeast Petroleum University, Daqing, 163318, China.

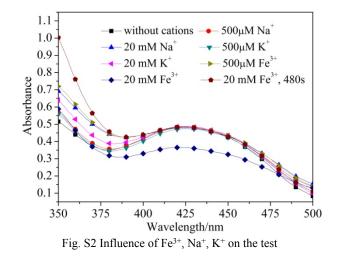
Corresponding authors

Jihui Gao

Tel: +86 451 8641 3231

Fax: +86 451 8641 2528


Email-address: gaojh@hit.edu.cn


In these experiments, the expected concentration of MSIA was 100mM, and FBBs/MSIA=50. FeSO₄·7H₂O and the cations or anions was added before extraction, and the concentration of FeSO₄ in the systems was 200mM. The extraction time was 300s. Fe₂(SO₄)₃, Na₂SO₄, K₂SO₄ were adopted to examine the influence of Fe³⁺, Na⁺, K⁺ on the test, and Fe(NO₃)₂, FeCl₂ were adopted to examine the influence of NO₃⁻, Cl⁻ on the test. However, high concentration of Fe₂(SO₄)₃ made the solution muddy, Fe(NO₃)₃ was used to instead of Fe₂(SO₄)₃ when we examined the influence of Fe³⁺ at the concentration of 20mM. The influence of NO₃⁻, Cl⁻ on the test is shown in Fig. S1 and the influence of on the test is shown in Fig. S2.

It can be seen from Fig. S1 that NO_3^- does not have an obvious influence on the test result of diazosulfones, even though the concentration of NO_3^- is 20mM. Cl⁻ does not have an obvious influence on the test when the concentration of Cl⁻ is low(500 μ M), however, the absorbance of diazosulfones(425nm) disappears when the concentration of Cl⁻ is 20mM. Consequently, the modified method is not appropriate for the system contains high concentration of Cl⁻.

From Fig. S2, it can be seen that Na⁺ and K⁺ do not affect the test result of diazosulfones obviously, even though the concentrations of Na⁺ and K⁺ are 20mM. Low concentration of Fe³⁺ does not have an obvious influence on the test, however, high concentration of Fe³⁺ leads to the increase of extraction time, and the absorption peak keeps 425nm. The absorbance of diazosulfones with extracting 480s after adding 20mM of Fe³⁺ is the same as that with extracting 300s before adding Fe³⁺. When we tested ·OH concentration in Fenton system, the concentration of Fe³⁺ was equal to that of ·OH. After the addition of 20.00mL of H₂O₂(250 μ M) in to 80.00mL of Fe²⁺/DMSO solution, the final concentrations of Fe³⁺ were expected to be 50.0 μ M. under this circumstance, Fe³⁺ did not have an obvious influence on the test.

$$Fe^{2+}+H_2O_2 \rightarrow Fe^{3+}+\cdot OH+OH^-$$

