Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2015

| 1  | Supplementary Data                                                                                                                                                                                  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | N-doped Carbon Dots with high sensitivity and selectivity for                                                                                                                                       |
| 3  | hypochlorous acid detection and its application in water                                                                                                                                            |
| 4  |                                                                                                                                                                                                     |
| 5  | Dongmei Wang <sup>a</sup> , Hui Xu <sup>a</sup> , Baozhan Zheng <sup>a</sup> , Yang Li <sup>a</sup> , Maoping Liu <sup>a</sup> , Juan Du <sup>a</sup> *, and                                        |
| 6  | Dan Xiao <sup>a,b</sup> *                                                                                                                                                                           |
| 7  | <sup>a</sup> College of Chemistry, Sichuan University, Chengdu, 610064, PR China.                                                                                                                   |
| 8  | <sup>b</sup> College of Chemical Engineering, Sichuan University, Chengdu, 610065, PR China.                                                                                                        |
| 9  | *Corresponding author:                                                                                                                                                                              |
| 10 | E-mail:dujuanchem@scu.edu.cn (Juan Du)                                                                                                                                                              |
| 11 | Tel: +86-28-85415029                                                                                                                                                                                |
| 12 | Preparation of ROS and RNS                                                                                                                                                                          |
| 13 | Various ROS and RNS including HOCl, H <sub>2</sub> O <sub>2</sub> , TBHP, TBO·, ONOO <sup>-</sup> , ·OH, O <sub>2</sub> <sup>-</sup> , <sup>1</sup> O <sub>2</sub> , NO <sub>2</sub> <sup>-</sup> , |
| 14 | were prepared according to the following methods.                                                                                                                                                   |
| 15 | Generation of HOCI: HOCI was prepared from the source of NaOCI in 7.4 PBS buffer. The                                                                                                               |
| 16 | concentration of the HOCl stock solution was determined by titration of Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> .                                                                             |
| 17 | Generation of H <sub>2</sub> O <sub>2</sub> : The H <sub>2</sub> O <sub>2</sub> stock solution was purchased from Chengdu Kelong Chemical                                                           |
| 18 | Factory. The concentration of H <sub>2</sub> O <sub>2</sub> was titrated according to iodometry.                                                                                                    |
| 19 | Generation of TBHP: A 10 mM stock solution of t-BuOOH was firstly prepared in anhydrous                                                                                                             |
| 20 | ethanol and then added into the probe testing solution.                                                                                                                                             |
| 21 | Generation of tert-butoxy radical (TBO·): TBO· were generated by Fenton reaction of TBHP                                                                                                            |
| 22 | with $Fe^{2+}$ . <sup>1</sup>                                                                                                                                                                       |
| 23 | Generation of peroxynitrite (ONOO-): Peroxynitrite solution was synthesized as reported. <sup>2</sup>                                                                                               |
| 24 | Firstly, hydrogen peroxide (0.7 M) was acidified with hydrochloric acid (0.6 M), the mixture                                                                                                        |
| 25 | solution and sodium nitrite (0.6 M) was added into sodium hydroxide (1.25 M) simultaneously.                                                                                                        |
| 26 | Then 0.08 g $MnO_2$ was added with vigorously stirring at room temperature to remove the                                                                                                            |
| 27 | superfluous H <sub>2</sub> O <sub>2</sub> . After the filtration the resulting solution was stored at lower than -18 °C. The                                                                        |
|    |                                                                                                                                                                                                     |

- concentration of the ONOO<sup>-</sup> stock solution was determined by measuring the absorbance at 302 28
- nm with a molar extinction coefficient of 1670 M<sup>-1</sup>·cm<sup>-1</sup>. 29
- Generation of ·OH: Hydroxyl radical (·OH) was generated in the Fenton system from ferrous 30
- 31 sulfate and hydrogen peroxide.
- Generation of superoxide solution ( $\cdot O_2$ ):  $\cdot O_2$  was prepared by adding KO<sub>2</sub> to dry dimethyl 32
- sulfoxide and stirring vigorously for 2 min.<sup>3</sup> 33
- Generation of singlet oxygen (<sup>1</sup>O<sub>2</sub>): <sup>1</sup>O<sub>2</sub> was produced from the H<sub>2</sub>O<sub>2</sub>/NaMoO<sub>4</sub> system.<sup>1</sup> 34
- 35 Generation of NO<sub>2</sub><sup>-</sup>: NaNO<sub>2</sub> was used as NO<sub>2</sub><sup>-</sup> source.



36

Fig. S2. The time-dependent fluorescence intensity of N-doped CDs (12 µg·mL<sup>-1</sup>) in the absence 41



nm, 
$$\lambda_{em} = 448$$
 nm).









Fig. S5. XPS spectrum of N-free CDs.



54 Fig. S6 Fluorescence spectra of N-free CDs in the presence of various concentrations of HOCl.





56

Fig. S7. Concentration-dependent of fluorescence response of N-doped CDs in PBS solution (50 mM, pH =7.4). The inset showed the linear response of fluorescence intensity versus the concentration of N-doped CDs. The error bar represented the standard deviation of three measurements.

61



Fig. S8. Fluorescence responses of N-doped CDs (12 μg·mL<sup>-1</sup>) to various ROS/RNS in PBS
solution (50 mM, pH=7.4) (λ<sub>ex</sub> = 360 nm). ROS/RNS including: TBHP (200 μM), TBO· (200 μM),
H<sub>2</sub>O<sub>2</sub> (500 μM), <sup>1</sup>O<sub>2</sub> (200 μM), ·O<sub>2</sub><sup>-</sup> (200 μM), ONOO<sup>-</sup> (100 μM), NO<sub>2</sub><sup>-</sup> (500 μM), ·OH (80 μM),
HOCl (30 μM).

67

## 68 References

- 69 1. G. Chen, F. Song, J. Wang, Z. Yang, S. Sun, J. Fan, X. Qiang, X. Wang, B. Dou and X.
- 70 Peng, Chem. Commun., 2012, 48, 2949-2951.
- 71 2. J. W. Reed, H. H. Ho and W. L. Jolly, J. Am. Chem. Soc., 1974, 96, 1248-1249.
- 72 3. A. R. Lippert, E. J. New and C. J. Chang, J. Am. Chem. Soc., 2011, 133, 10078-10080.