Supporting Information

One-step green synthesis of polypyrrole-Au nanocomposite and its application in myoglobin aptasensor

Chong Sun^a, Daoying Wang^{a,*}, Zhiming Geng^a, Ling Gao^b, Muhan Zhang^a, Huan Bian^a, Fang Liu^a,

Yongzhi Zhu^a, Haihong Wu^a, Weimin Xu^{a,*}

^aInstitute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China

^bJiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China

*Corresponding author.

E-mail address: daoyingwang@yahoo.com (D. Wang); weiminxu2002@aliyun.com (W. Xu)

Tel.: +86 25 84390065, Fax: +86 25 84390065

Fig. S1 Photograph of (A) PPy and (B) PPy-Au NC.

Fig. S2 UV-vis adsorption spectrum of PPy-Au NC.

Fig. S3 (A) CVs of MBA/(PPy-Au)/APTES/GCE in 0.1 M PBS (pH=6.0) containing 10 mM [Fe(CN)₆]^{3-/4-}(1:1) solution and 0.1 M KCl at different scan rates. Scan rate (from a to j): 20, 30, 40, 50, 60, 70, 80, 90, 100, 120 mV·s⁻¹. (B) Plots of anodic and cathodic peak current vs. scan rate.

Fig. S4 (A) CVs of (a) MBA/(PPy-Au)/APTES/GCE, (b) MBA/Au/APTES/GCE, (c) Mb/MBA/(PPy-Au)/APTES/GCE and (d) Mb/MBA/Au/APTES/GCE in 0.1 M PBS (pH = 6.0) containing 10 mM [Fe(CN)₆]^{3-/4-}(1:1) solution and 0.1 M KCl.

Fig. S5 Electrochemical impedance spectra of (a) (PPy-Au)/APTES/GCE, (b) MBA/(PPy-Au)/APTES/GCE and (c) Mb/MBA/(PPy-Au)/APTES/GCE recorded at the open circuit potential in 10 mM [Fe(CN)₆]^{3-/4-}(1:1) solution containing 0.1 M KCl. Inset is a schematic of the equivalent circuit.

Fig. S6 Specificity of the assay for 0.05 $g \cdot L^{-1}$ Mb, four interfering substances and mixture of the four interferences, including hemin, GOx, cytochrome c and hemoglobin were 5 $g \cdot L^{-1}$.

Determination methods	Linear Range	Detection limit	R ²	Ref.
poly(HEMA-MATrp) nanofilm SPR sensor	0.1-1.0 μg∙mL ⁻¹	87.6 ng∙mL- ₁	0.98	45
MIP/Au-SPE biosensor	0.852-4.26 µg∙mL ⁻¹	2.25 $\mu g \cdot mL^{-1}$	/	46
TiO ₂ nanotubes sensor	0.001-0.1 mg·mL ⁻¹	1 μg·mL ⁻¹	/	47
SPR immunosensor	100-1700 ng∙mL ⁻¹	/	>0.98	48
MBA/(PPy-Au)/ APTES/GCE	0.0001- 0.15 g·L ⁻¹	30.9 ng∙mL ⁻ ₁	0.9931	This work

 Table S1. Comparison of analytical performance of aptasensor and other

 determination methods

/ represents relevant data which were not provided in these references.

Samples	muscle-1	muscle-2	muscle-3	muscle-4
Colorimetry (μ mol \cdot g $^{-1}$)	1.59±0.18	1.40±0.25	0.25±0.31	2.12±0.41
Aptasensors (μ mol \cdot g ⁻¹)	1.48±0.02	1.05±0.08	0.17±0.05	1.75±0.03

 Table S2. Comparison of two methods obtained in practical samples.