Supporting Information

Electrochemical sensor based on polyaniline-modified SnO_2

nanocomposite for ethephon detection

Zhihong Zhang^{a,b*}, Shuyong Zhai^b, Minghua Wang^a, Linghao He^b, Donglai Peng^b,

Shunli Liu^b, Yanqin Yang^a, Shaoming Fang^{a,b}, Hongzhong Zhang^{a,b*}

^aHenan Collaborative Innovation Center of Environmental Pollution Control and

Ecological Resoration,

^b Henan Provincial Key Laboratory of Surface and Interface Science,

Zhengzhou University of Light Industry, No. 166, Science Avenue, Zhengzhou 450001,

P. R. China.

E-mail addresses: mainzhh@163.com or zhz@zzuli.edu.cn

1. EIS Nyquist plots and equivalent circuit

The EIS spectra were analyzed using the software Zview2, a nonlinear leastsquare was used to fit and determine the parameters of the elements in an equivalent circuit (Fig. S1). The Randles equivalent circuit consisting of solution resistance (R_s), charge-transfer resistance (R_{et}), constant-phase element (CPE), and Warburg impedance (W_o) was inset of Fig. S1.

Fig. S1 EIS Nyquist plots and equivalent circuit

2. Chemical elements of SnO₂@PANI and SnO₂@PANI- ethephon

Samples	Atomic %					
	C 1s	N 1s	Sn 2d	O 1s	Р 2р	Cl 2p
SnO ₂ @PANI	60.33	9.39	6.42	23.87		
SnO ₂ @PANI+ethepho n	43.1	6.83	5.39	35.51	8.21	1.05

Table S1 Atomic % in SnO₂@PANI and SnO₂@PANI- ethephon

3. N₂ adsorption /desorption measurements

The N₂ adsorption–desorption isotherms of SnO₂@PANI sample is presented in Fig. S2. According to the BET analysis, the specific surface area of the composite material was obtained as14.332 m²/g.

Fig. S2 (a) N_2 adsorption and desorption isotherm of SnO₂@PANI nanocomposite.

4. Other interferences

Fig. S3 ΔR_{ct} values for the ethephon detection in the absence (a) and presence of 3 ng/mL of glucose (b), citric acid (c), oxalic acid (d), PO₄³⁻ (e), SO₄²⁻ (f), NO₃⁻ (g), Cu²⁺ (h), Fe³⁺ (i), Pb²⁺ (j), Hg²⁺ (k), methyl parathion (l), carbofuran (m), and p-nitrophenol (n).