Electronic Supporting Information

1. Anionic Response of 2-HPEAPB in DMF, DMSO, H₂O, and methanol

S.Fig. 1 (a) UV–Vis spectra of 2-HPEAP ($3.0 \times 10^{-5} \text{ mol } L^{-1}$) in DMF upon the addition of 5 equiv of F⁻, Cl⁻, Br⁻, I⁻, AcO⁻, CN⁻, H₂PO₄⁻, and HSO₄⁻. (b) Color changes observed in 2-HPEAPB ($3.0 \times 10^{-5} \text{ mol } L^{-1}$) upon the addition of various anions as tetra-butylammonium salts ($1.5 \times 10^{-4} \text{ mol } L^{-1}$).

S.Fig. 2 (a) UV–Vis spectra of 2-HPEAPB ($3.0 \times 10^{-5} \text{ mol } L^{-1}$) in DMSO upon the addition of 5 equiv of F⁻, Cl⁻, Br⁻, I⁻, AcO⁻, CN⁻, H₂PO₄⁻, and HSO₄⁻. (b) Color changes observed in 2-HPEAPB ($3.0 \times 10^{-5} \text{ mol } L^{-1}$) upon the addition of various anions as tetra-butylammonium salts ($1.5 \times 10^{-4} \text{ mol } L^{-1}$).

S.Fig. 3 (a) UV–Vis spectra of 2-HPEAPB (3.0×10^{-5} mol L⁻¹) in H₂O upon the addition of 5 equiv of F⁻, Cl⁻, Br⁻, I⁻, AcO⁻, CN⁻, H₂PO₄⁻, and HSO₄⁻. (b) Color changes observed in 2-HPEAPB (3.0×10^{-5} mol L⁻¹) upon the addition of various anions as tetra-butylammonium salts (1.5×10^{-4} mol L⁻¹).

S.Fig. 4 (a) UV–Vis spectra of 2-HPEAPB $(3.0 \times 10^{-5} \text{ mol } \text{L}^{-1})$ in methanol upon the addition of 5 equiv of F⁻, Cl⁻, Br⁻, I⁻, AcO⁻, CN⁻, H₂PO₄⁻, and HSO₄⁻. (b) Color changes observed in 2-HPEAPB $(3.0 \times 10^{-5} \text{ mol } \text{L}^{-1})$ upon the addition of various anions as tetra-butylammonium salts $(1.5 \times 10^{-4} \text{ mol } \text{L}^{-1})$.

2. The influence of Cations

The anti–jamming ability of 2-HPEAPB to cations including Na⁺, K⁺, Sn²⁺, Ba²⁺, Fe³⁺, Al³⁺, Ni²⁺, Cr³⁺, Co²⁺, Mn²⁺, Cd²⁺ was evaluated using UV-Vis competition experiments (S.Fig. 5). These cations (such as K⁺, Na⁺) which cannot form complexes or precipitation with CN⁻ produce slight influence, however, these cations (such as Sn²⁺, Ba²⁺, Fe³⁺, Al³⁺, Ni²⁺, Cr³⁺, Co²⁺, Mn²⁺, and Cd²⁺) which could form precipitation or complexes with CN⁻ produce great influence.

S.Fig. 5 The UV-Vis intensity of 2-HPEAPB $(3.0 \times 10^{-5} \text{mol L}^{-1})$ in acetonitrile-water (95:5, v/v) at 528 nm to various metal ions. The black bars represent the UV-Vis intensity of 2-HPEAPB in the presence of 1 equiv of CN⁻. The red bars represent the UV-Vis intensity of 2-HPEAPB in the presence of 1 equiv upon subsequent addition of 1 equiv various cations (Na⁺, K⁺, Sn²⁺, Ba²⁺, Fe³⁺, Al³⁺, Ni²⁺, Cr³⁺, Co²⁺, Mn²⁺, Cd²⁺).