Extraction, isolation and characterization of compounds

Compounds 1-10 were obtained using 5 lichens namely *Parmotrema grayana*, *Parmotrema cooperi*, *Heterodermia obscurata*, *Roccella montagnei* and *Cladonia sp*. Manually cleaned, airdried and crushed lichens were sequentially extracted with CH_2Cl_2 , followed by MeOH. In the case of *R. montagnei*, the extraction was carried out in acetone. The crude extracts were fractionated via column chromatography to isolate pure compounds. Melting points and spectral data of isolated compounds were identical with authentic samples or reported data.

Orsellenic acid (1)

The MeOH extract of *Parmotrema grayana* when chromatographed via silica gel MPLC firstly through eluent 80% hexane: CH₂Cl₂ to CH₂Cl₂: MeOH and re-chromatographed via eluent: hexane: ethyl acetate) and further chromatographed using gravity column chromatography (eluent: hexane: ethyl acetate) furnished orsellinic acid (1). ¹H NMR (300 MHz, DMSO): $\delta_{\rm H}$ 2.39 (3H, s, 8-Me), 6.10 (1H, d, H-5, *J* = 2.4), 6.16 (1H, d, H-3, *J* = 2.4), 10-11 (1H, bs OH); ¹³C NMR (75 MHz, DMSO): $\delta_{\rm C}$ 104.9 (C-1), 161.5 (C-2), 100.3 (C-3), 164.2 (C-4), 110.7 (C-5), 142.6 (C-6), 172.9 (C-7), 23.4 (C-8).

Methylorsellinate (2)

The MeOH extract of *P. grayana* when subjected to MPLC (eluent: 80% hexane: CH₂Cl₂ to CH₂Cl₂: MeOH) resulted in crystals of methyl orsellinate (**2**) which were recrystallised using 50% CH₂Cl₂: hexane followed by 90% CH₂Cl₂: hexane to obtain colourless crystals of (**2**). ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 2.48 (3H, s, 8-Me), 3.92 (3H, s, -COOMe), 6.24 (1H, d, H-5, *J* = 2.5), 6.28 (1H, d, H-3, *J* = 2.5), 11.56 (1H, bs OH); ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 105.6 (C-1), 160.2 (C-2), 101.2 (C-3), 165.1 (C-4), 111.3 (C-5), 143.8 (C-6), 171.9 (C-7), 24.3 (C-8), 51.9 (C-7-OMe).

Methyl-β-orcinolcarboxylate (3)

The CH_2Cl_2 extract of *Heterodermia obscurata* when subjected to MPLC (eluent: hexane to CH_2Cl_2 to MeOH), and resubjected to gravity column chromatography (eluent: hexane: CH_2Cl_2

to 5% MeOH: CH₂Cl₂), yielded methyl- β -orcinol carboxylate (**3**) upon recrystalisation. ¹H NMR (CDCl₃): $\delta_{\rm H}$ 2.10 (3H, s, 9-Me), 2.45 (3H, s, 8-Me), 3.91 (3H, s, COOMe), 6.19 (1H, s, H-5), 12.00 (1H, bs, 2-OH); ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 105.2 (C-1), 163.0 (C-2), 108.5 (C-3), 158.0 (C-4), 110.5 (C-5), 140.0 (C-6), 172.4 (C-7), 24.1 (C-8), 7.7 (C-9), 51.8 (COOMe).

Ethylhaematomate (4)

The hexane extract of *Paromtrema cooperi* yielded ethylhaematomate when subjected to repeated silica gel column chromatography with increasing polarities (n-hexane: CH₂Cl₂, 9:1). ¹H NMR (CDCl₃, 300 MHz) δ 1.41 (3H, t, J10, 11 = 8.0 Hz), 2.52 (3H, s), 4.40 (2H, q, J11, 10 = 8.0 Hz), 6.27 (1H, s), 10.32 (1H, s), 12.38 (1H, s), 12.95 (1H, s). ¹³C NMR (CDCl₃, 100 MHz) δ 104.0 (C-1), 168.3 (C-2), 108.5 (C-3), 166.5 (C-4), 112.0 (C-5), 152.4 (C-6), 171.6 (C-7, ester C=O), 193.0 (C-8, aldehydic C=O), 25.2 (C-9), 61.8 (C-10), 14.1 (C-11).

Atranorin (5)

The ubiquitous depside atranorin was isolated from CH_2Cl_2 extract of *Parmotrema grayana* when subjected to MPLC (eluent: hexane to 50% CH_2Cl_2 : MeOH). Fractions eluting between 80% CH_2Cl_2 : Hexane to 100% CH_2Cl_2 gave crystals which were re-crystalized using 80% CH_2Cl_2 : hexane to obtain white needle-like crystals of atranorin (5) ¹H NMR (300 MHz, CDCl3): δ H 2.09 (3H, s, Me-8'), 2.54 (3H, s, Me-9'), 2.68 (3H, s, Me-9), 3.98 (3H, s, -CO2Me), 6.39 (1H, s, H-5), 6.51 (1H, s, H-5'), 10.35 (1H, s, -CHO), 11.91 (1H, s, OH-2'), 12.48 (1H, s, OH-2), 12.53 (1H, s, OH-4); 13C NMR (75 MHz, CDCl3): δ C 102.9 (C-1), 169.1 (C-2), 108.6 (C-3), 167.5 (C-4), 112.8 (C-5), 152.4 (C-6), 169.7 (C-7), 193.8 (C-8), 25.5 (C-9), 116.8 (C-1'), 162.9 (C-2'), 110.3 (C-3'), 152.0 (C-4'), 116.0 (C-5'), 139.8 (C-6'), 52.3 (C-7'-OMe), 172.2 (C-7'), 23.9 (C-8'), 9.3 (C-9').

Lecanoric acid (6)

The MeOH extract of *Parmotrema grayana* when chromatographed via silica gel MPLC firstly through eluent 80% hexane: CH_2Cl_2 to CH_2Cl_2 : MeOH and re-chromatographed via eluent: hexane: ethyl acetate) and further chromatographed using gravity column chromatography (eluent: hexane: ethyl acetate) gave pale yellow crystals of lecanoric acid (6), which was re-

crystalized using 2% MeOH:CH₂Cl₂ as solvent. ¹H NMR (300 MHz, DMSO): $\delta_{\rm H}$ 2.35 (3H, s, 8'-Me), 2.37 (3H, s, 8-Me), 6.22 (2H, s, 3, 5-H), 6.59 (1H, d, 5'-H, *J* = 2.1 Hz), 6.62 (1H, d, 3'-H, *J* = 2.1 Hz), 9.99 (1H, s, 2'-OH), 10.31 (1H, s, 2-OH); ¹³C NMR (75 MHz, DMSO): $\delta_{\rm C}$ 108.1 (C-1), 160.0 (C-2), 100.4 (C-3), 161.0 (C-4), 109.8 (C-5), 139.4 (C-6), 166.6 (C-7), 21.37 (C-8), 116.3 (C-1'), 158.8 (C-2'), 107.3 (C-3'), 152.1 (C-4'), 114.6 (C-5'), 140.2 (C-6'), 170.4 (C-7'), 21.4 (C-8').

Erythrin (7)

The crude acetone extract of *Roccella montagnei* was subjected to MPLC (eluent: 10% hexane: CH₂Cl₂ to CH₂Cl₂: MeOH). Fractions obtained around 5% MeOH: CH₂Cl₂ to about 12% MeOH: CH₂Cl₂ contained erythrin (7) as the major component. These fractions were combined and resubjected again to MPLC using the solvent gradient CH₂Cl₂ to 50% CH₂Cl₂: MeOH to provide pure erythrin (7) in white crystalline form. ¹H NMR (300 MHz ,CD₃OD): $\delta_{\rm H}$ 2.51 (3H, s, 8-Me), 4.34-4.42 (1H, dd, 1'-H, *J* = 11.7 Hz), 4.56-4.61 (1H, dd, 1'-H, *J* = 11.5 Hz), 3.87-3.95 (1H, dt, 2'-H, *J* = 13.5 Hz), 3.63-3.68 (2H, m, 3', 4'-H), 3.76-3.82 (1H, dd, 4'-H, *J* = 13.5 Hz), 6.15 (1H, d, 3-H, *J* = 2.1 Hz), 6.20 (1H, dd, 5-H, *J* = 2.1 Hz); ¹³C NMR (75 MHz, CD₃OD): $\delta_{\rm C}$ 106.1 (C-1), 166.0 (C-2), 101.7 (C-3), 163.7 (C-4), 112.4 (C-5), 144.9 (C-6), 172.9 (C-7), 24.5 (C-8), 68.0 (C-1'), 71.0 (C-2'), 73.7 (C-3'), 64.5 (C-4').

Sekikaic acid (8)

The MeOH extract of *Heterodermia obscurata* when subjected to MPLC firstly as hexane: CH₂Cl₂ to CH₂Cl₂: MeOH as eluent and subjected to another MPLC (eluent:20% hexane: CH₂Cl₂ to 20% MeOH: CH₂Cl₂) and gravity column chromatography (eluent:5% hexane: CH₂Cl₂ to 10% MeOH: CH₂Cl₂), afforded the sekikaic acid (**8**). ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 0.92-1.02 (6H, two overlapping t, 3",3"'-Me), 1.62-1.78 (4H, m, 2", 2"'-CH₂), 2.94-3.02 (4H, m, 1", 1"'-CH₂), 3.82 (3H, s, 4-OCH₃), 3.89 (3H, s, 4'-OCH₃), 6.38 (2H, d, 3, 5-H, *J* = 2.4 Hz), 6.44 (1H, s, 5'-H), 11.10 (1H, s, 2-OH), 11.51 (1H, s, 2'-OH); ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 104.4 (C-1), 165.1 (C-2), 98.8 (C-3), 164.1 (C-4), 110.7 (C-5), 148.7 (C-6), 168.5 (C-7), 55.3 (4-OCH₃), 104.9 (C-1'), 156.5 (C-2'), 124.7 (C-3'), 155.9 (C-4'), 55.9 (4'-OCH₃), 106.2 (C-5'), 146.9 (C-6'), 174.9 (C-7'), 38.7 (C-1"), 25.0 (C-2"), 14.3 (C- 3"), 38.9 (C-1"), 24.8 (C-2""), 14.3 (C-3").

Lobaric acid (9)

The MeOH extract of a *Cladonia sp.* when subjected to MPLC (eluent: hexane: CH₂Cl₂ to CH₂Cl₂: MeOH) and rechromatographed using (eluent: 25% hexane: CH₂Cl₂ to 30% MeOH: CH₂Cl₂), afforded the depsidone lobaric acid (**9**), which was further purified by recrystallisation (97% CH₂Cl₂: MeOH) to obtain white crystals of (**9**). ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 0.85-0.90 (6H, two overlapping t, 5",5"'-Me), 1.30-1.39 (6H, m, 4", 3"', 4"'-CH₂), 1.50-1.60 (4H, m, 3", 2"'-CH₂), 2.77 (2H, t, 1"'-CH₂, *J* = 14.4 Hz), 2.87 (2H, t, 2"-CH₂, *J* = 14.4 Hz), 3.90 (3H, s, OCH₃), 6.69 (1H, s, 3'-H), 6.97 (1H, d, 3-H, *J* = 2.4 Hz), 7.09 (1H, d, 5- H, *J* = 2.4 Hz); ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 110.8 (C-1), 162.4 (C-2), 106.0 (C-3), 163.8 (C-4), 111.4 (C-5), 148.3 (C-6), 161.7 (C-7), 56.5 (-OCH₃), 120.2 (C-1'), 152.5 (C-2'), 105.6 (C-3'), 144.1 (C-4'), 13.8 (C-5"), 27.3 (C-1"'), 30.3 (C-2"''), 31.3 (C-3"''), 21.9 (C-5"''), 13.8 (C-5"'').

Usnic acid (10)

The CH₂Cl₂ extract of *Parmotrema grayana* when subjected to MPLC (eluent: hexane to 70% CH₂Cl₂: MeOH) and subjected to gravity column chromatography (eluent: hexane: CH₂Cl₂: 5% MeOH: CH₂Cl₂) yielded usnic acid (**10**) as yellow prisms. ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 1.76 (3H, s, Me-13), 2.11 (3H, s, Me-16), 2.66 (3H, s, Me-15), 2.67 (3H, s, Me-18), 5.97 (1H, s, H-4), 11.01 (1H, s, OH-10), 13.30 (1H, s, OH-8), 18.81 (1H, s, OH-3); ¹³C NMR (75 MHz, CDCl₃) $\delta_{\rm C}$: 198.1 (C-1), 179.4 (C-2), 155.2 (C-3), 98.3 (C-4), 101.5 (C-5), 98.4 (C-6), 109.3 (C-7), 157.5 (C-8), 103.9 (C-9), 163.9 (C-10), 105.2 (C-11), 59.1 (C-12), 27.8 (C-13), 200.3 (C-14), 32.1 (C-15), 7.5 (C-16), 201.7 (C-17), 31.2 (C-18).

Table Caption

Table S1: product ions of deprotonated secondary at optimum collision energy

Table S1: product ions of deprotonated secondary at optimum collision energy.

Name of compound	[M-H] ⁻	Exact	Observed mass	Error
		mass		
Orsellinic acid	$C_7 H_7 O_2$	123.0446	123.0445	-0.8497
	C ₅ H ₅ O	81.034	81.0342	1.9764
	C ₆ H ₇	79.0547	79.0545	-3.4821
Methylorsellinate	C ₈ H ₅ O ₃	149.0237	149.0238	-1.1348
	C ₇ H ₅ O	105.034	105.0323	-16.5648
Methyl –β-orcinolcarboxylate	C ₉ H ₇ O ₃	163.0395	163.0366	-17.9051
	C ₈ H ₇ O	119.0496	119.0513	13.5242
Ethylhaematomate	C ₉ H ₇ O ₅	195.0306	195.0293	6.417
	C ₉ H ₅ O ₄	177.0187	177.0195	4.0461
	C8H ₇ O ₄	167.0344	167.0347	1.5934
	C ₈ H ₇ O ₃	151.0395	151.0391	-0.0215
	C ₇ H ₇ O ₂	123.0446	123.0445	-0.8497
	C ₇ H ₅ O	105.034	105.0343	2.4769
Atranorin	C ₁₀ H ₁₁ O ₄	195.0657	195.0661	1.8762
	C ₉ H ₅ O ₄	177.187	177.0177	-6.1223
	C ₉ H ₇ O ₃	163.0395	163.0395	-0.1177
Lecanoric acid	C ₈ H ₇ O ₄	167.0344	167.0343	-08012
	C ₈ H ₅ O ₃	149.0238	149.0233	-3.819
	C ₇ H ₇ O ₂	123.0809	123.0800	-8.0441
Erythrin	C ₁₂ H ₁₅ O ₇	271.0817	271.0818	0.0808
	C ₈ H ₇ O ₄	167.0344	167.0349	2.7907
	C ₈ H ₅ O ₃	149.0238	149.0238	-0.4638
Sekikaic acid	C ₁₁ H ₁₃ O ₄	209.0828	209.0813	6.772
	C ₁₁ H ₁₃ O ₅	225.0761	225.0762	-0.8829
	C ₁₀ H ₁₃ O ₂	165.0915	165.0933	10.5709
	C ₉ H ₁₀ O ₂	150.068	150.0703	14.7951
	C ₁₀ H ₁₃ O ₃	181.0864	181.0882	9.5564
	C ₇ H ₆ O ₂	122.0367	122.0393	18.1948
Lobaric acid	$C_{24} H_{27} O_6$	411.1807	411.1793	-3.5602
	$C_{23} H_{27} O_4$	367.1909	367.1917	2.0843
	C ₁₈ H ₁₆ O ₄	296.1048	296.1072	7.9052
	$C_{22} H_{24} O_4$	352.1674	352.1715	11.473
	C ₁₇ H ₁₃ O ₄	281.0813	281.0835	7.5277
	C ₁₃ H ₁₃ O ₄	233.0813	233.0811	-1.2188
Usnic acid	$C_{17}H_{12}O_{7}$	328.0583	328.0589	1.8199
	C ₁₇ H ₁₃ O ₆	313.0712	313.0712	-0.0426
	$C_{13}H_{11}O_4$	231.0657	231.0644	-5.7732
	$C_{14}H_{11}O_5$	259.0606	259.0656	19.1123