Electronic Supplementary Material (ESI) for Analytical Methods.
This journal is © The Royal Society of Chemistry 2015

Fig. S1a. ${ }^{13} \mathrm{C}$ NMR subspectrum of the artificial mixture of 14 sugar model compounds; Region 91ppm-106ppm

Fig. S1b. ${ }^{13} \mathrm{C}$ NMR subspectrum of the artificial mixture of 14 sugar model compounds; Region 78ppm-96ppm

Fig. S1c. ${ }^{13} \mathrm{C}$ NMR subspectrum of the artificial mixture of 14 sugar model compounds; Region 73ppm-78ppm

Fig. S1d. ${ }^{13} \mathrm{C}$ NMR subspectrum of the artificial mixture of 14 sugar model compounds; Region 69ppm-73ppm

Fig. S1e. ${ }^{13} \mathrm{C}$ NMR subspectrum of the artificial mixture of 14 sugar model compounds; Region 60ppm-69ppm

Fig. S2. Actual vs. ${ }^{13} \mathrm{C}$ NMR concentration of isoglucose

Fig. S3. Actual vs. ${ }^{13} \mathrm{C}$ NMR concentration of artificial mixture

Figure S4. Actual concentration of β-D-glycopyranose vs. ${ }^{13} \mathrm{C}$ NMR concentration (left), and the ratio of average signal integrals of β-D-glycopyranose over the signal integral of the internal standard (right) over the whole concentration range.

Fig. S5. Average actual concentration of β-D-glycopyranose vs. S/N ratio over the whole concentration range.

