

Fig S1. Effect of FITC concentration on H_2O_2 detection

Fig S2. Effect of conjugation time on H_2O_2 detection

Fig. S3. Effect of etching time on H_2O_2 detection.

Methods	Technique in detail	Test media	Selectivity	Detection limit	Response Range	Ref.
Colorimetry	Catalytic reduction property of silver nanoparticals	Ultrapure water	Good	10 nM	0.05-50 μM	1
Colorimetry	Intrinsic peroxidase-like catalytic activity of nitrogen-doped grapheme quantum dots	H ₃ PO ₄ –NaH ₂ PO ₄ buffer (0.1 M pH 3.0)	Good	5.3 μΜ	20–1170 μΜ	2
Colorimetry	Homogeneous, unmodified gold nanoparticle	Citrate buffer (10 mM)	Good	Not given	1.3-41 μM	3
Colorimetry	Promising peroxidase mimetics by NiO nanoparticles modified with 5,10,15,20-tetrakis(4- carboxylpheyl)-porphyrin	HAc-NaAc buffer (0.026 M, pH 3.8)	Good	8 μΜ	Not given	4
Colorimetry	Prussian blue nanoparticles as peroxidase mimetics	Acetate buffer (0.2 M, pH 4.0)	Good	0.03 μΜ	0.1 μΜ-50.0 μΜ	5
Colorimetry	Peroxidase-like activity of water-soluble cupric oxide nanoparticles	Phosphate buffer (20 mM pH 6.0)	Good	Not given	0.01–1.0 mM	6
Fluorometry	Fluorescent detection of H_2O_2 based on Fe_3O_4 magnetic microspheres Enzyme mimetics	Phosphate buffer (50 mM, pH 3.0)	Good	0.008 µM	0.04-20 μM	7

Methods	Technique in detail	Test media	Selectivity	Detection limit	Response Range	Ref.
Fluorometry	Fluorescence enhancement of CdTe MPA-capped	Water	Good	0.0012%	0.0025%-0.04%	8
	quantum dots by glutathione					
Fluorometry	Carbon quantum dots fabricated by dielectric	Acetate buffer solution(10	Good	3.8 µM	10-150 μM	9
	barrier discharge-assisted one-pot strategy	mM, pH 5.0))
Fluorometry	Polyethyleneimine-capped silver nanoclusters	Glycine buffer(20 mM, pH	Good	0.4µM	1-10 μΜ	10
		9.0)				
Fluorometry	Polyethyleneimine-templated Cu nanolusters	Phosphate buffer (20 mM,	Good	0.4 μΜ	0.5-10 μΜ	11
		pH 8.0)				
Fluorometry	H_2O_2 can oxidize the highly reactive sharp	Sodium citrate solution (15	Good	4 nM	0.01-100 μΜ	Our
	edges/tips of silver nanoprism-dye complex	mM, pH 8.0)				work

References

- [1] Wang G L, Zhu X Y, Jiao H J, et al. Ultrasensitive and dual functional colorimetric sensors for mercury (II) ions and hydrogen peroxide based on catalytic reduction property of silver nanoparticles.[J]. Biosensors & Bioelectronics, 2012, 31(1):337-342.
- [2] Lin L, Song X, Chen Y, et al. Intrinsic peroxidase-like catalytic activity of nitrogen-doped graphene quantum dots and their application in the colorimetric detection of H2O2 and glucose.[J]. Analytica Chimica Acta, 2015, 869.
- [3] Wu Z S, Zhang S B, Guo M M, et al. Homogeneous, Unmodified Gold Nanoparticle-Based Colorimetric Assay Of Hydrogen Peroxide[J]. Analytica Chimica Acta, 2007, 584(1):122– 128.
- [4] Liu Q, Yang Y, Li H, et al. NiO nanoparticles modified with 5,10,15,20-tetrakis(4-carboxyl pheyl)-porphyrin: promising peroxidase mimetics for H2O2 and glucose detection.[J].
 Biosensors & Bioelectronics, 2015, 64:147–153.
- [5] Zhang W, Ma D, Du J. Prussian blue nanoparticles as peroxidase mimetics for sensitive colorimetric detection of hydrogen peroxide and glucose[J]. Talanta, 2014, 120(120):362– 367.
- [6] Chen W, Chen J, Feng Y B, et al. Peroxidase-like activity of water-soluble cupric oxide nanoparticles and its analytical application for detection of hydrogen peroxide and glucose[J]. Analyst, 2012, 137(7):1706-1712.
- [7] Wei H, Wang E, Chem. A. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection.[J]. Analytical Chemistry, 2008, 80(6):2250-2254.

- [8] Rodrigues S S, Ribeiro D S, Molina-Garcia L, et al. Fluorescence enhancement of CdTe MPAcapped quantum dots by glutathione for hydrogen peroxide determination.[J]. Talanta, 2014, 122:157–165.
- [9] He D H, Zheng C B, Wang Q, et al. Dielectric barrier discharge-assisted one-pot synthesis of carbon quantum dots as fluorescent probes for selective and sensitive detection of hydrogen peroxide and glucose [J]. Talanta, 2015, 142(1): 0039-9140.
- [10] Wen T. Polyethyleneimine-capped silver nanoclusters as a fluorescence probe for sensitive detection of hydrogen peroxide and glucose [J]. Analytica Chimica Acta, 2012, 749(20):56–62.
- [11] Ling Y, Zhang N, Qu F, et al. Fluorescent detection of hydrogen peroxide and glucose with polyethyleneimine-templated Cu nanoclusters [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopyanuary 2014, Volume 118(24): 1386-1425.