Supporting information

Direct electrochemistry and bioelectrocatalysis of horseradish peroxidase entrapped in a self-supporting nanoporous gold electrode:

a new strategy to improve the orientation of immobilized enzyme

Lu Lu,*ab Yanjie Dong,a Junwei Wang,a Qianqian Lia and Xia Wu*a

^aSchool of Chemistry and Chemical Engineering, Anqing Normal University,

Anqing 246011, P. R. China

^bCollaborative Innovation Center for Petrochemical New Materials,

Anqing 246011, P. R. China

*Corresponding author: Lu Lu and Xia Wu

Address: No. 128 Linghu Nanlu

Anqing Normal University

School of Chemistry and Chemical Engineering

Anqing 246011, China

Tel.: +86-556-550-0090; Fax: +86-556-550-0090

E-mail address: lulu19861117@126.com; xiawu@aqtc.edu.cn

Fig. S1. The CV gram of a polished gold wire in [Choline]Cl·2ZnCl₂ at 40 $^{\circ}$ C. Scan rate: 0.01 V s⁻¹. Inset: the SEM image of the gold wire surface after the electrochemical treatment.

Fig. S2. CV grams of a polished gold electrode (a) and NPGEs (b-g) in 0.5 M H₂SO₄ solution at a scan rate of 0.1 V s⁻¹. Inset: the magnified curve of curve a. The NPGEs were obtained from the gold electrode after alloying/dealloying at 50 °C (b), 70 °C (c), 90 °C (d), 100 °C (e), 110 °C (f) and 120 °C (g) at a scan rate of 0.01 V s⁻¹ after 15 cycles.

Fig. S3. Calibration curve of the initial rate of catalytic oxidation of OPD by HRP versus the concentration of HRP in 0.1 M phosphate buffer (pH 7.0). Each datum was an average of three replicate determinations.

Fig. S4. CV grams of Nafion/HRP/NPGE in 0.1 M phosphate buffer (pH 7.0) at different scan rates (a-f: 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 V s⁻¹). Inset: plot of redox peak potential versus lnv.

Fig. S5. The effect of the buffer pH on the electrochemical response current of $0.1 \text{ mM H}_2\text{O}_2$ on Nafion/HRP/NPGE.

Temperature/°C	A_{real}/mm^2	R_{f}
50	11	6.2
70	27	15.3
90	58	32.8
100	76	42.9
110	104	58.8
120	156	88.1

Table S1. The real area (A_{real}) and R_f of the NPGEs fabricated under different temperatures.^{a, b}

 $^{\rm a}$ NPGEs fabricated after 15 scan cycles at a scan rate of 0.01 V s^-1.

^b Each datum was an average of three replicate determinations.

HRP biosensors	Linear range/µM	Sensitivity/µA mM ⁻¹	Detection limit/µM	References
Nafion/HRP-GNS ^a - TiO ₂ /GCE ^b	41-630	0.23	5.9	1
Ti/TiO ₂ /Au/HRP	5-400	Not reported	2	2
MWNTs ^c /chitosan/ GCE	16.7-740	4.9	10.3	3
HRP/HNT ^d /chitosan/ GCE	2.6-75	12	0.7	4
SPCE ^e /GS ^f -Nafion/ Fe ₃ O ₄ -Au-HRP	20-2500	Not reported	12	5
Nafion/HRP/NPGE	10-380	21	2.6	This work

Table S2. Comparison of analytical performance of several HRP biosensors for H₂O₂.

^a Gold nano-seeds.

^b Glassy carbon electrode.

^c Multi-wall carbon nanotubes.

- ^d Halloysitenanotubes.
- ^e Screen-printed carbon electrode.

^f Graphene sheets.

References

Y. Wang, X. Ma, Y. Wen, Y. Xing, Z. Zhang and H. Yang, *Biosens. Bioelectron.*, 2010, 25, 2442-2446.

- 2. A. K. M. Kafi, G. Wu and A. Chen, Biosens. Bioelectron., 2008, 24, 566-571.
- 3. L. Qian and X. Yang, Talanta, 2006, 68, 721-727.
- 4. X. Sun, Y. Zhang, H. Shen and N. Jia, *Electrochim. Acta*, 2010, 56, 700-705.
- 5. X. Yang, F. Xiao, H. Lin, F. Wu, D. Chen and Z. Wu, *Electrochim. Acta*, 2013, 109, 750-755.

Real sample	Value found in diluted sample/mM	Added/mM	Total found/mM	Recovery/%
1	0.168	0.050	0.214	98.2
2	0.168	0.100	0.273	101.9
3	0.168	0.150	0.328	103.1

Table S3. Determination of H_2O_2 in real samples (diluted disinfector).*

* Each datum was an average of three replicate determinations.