Electronic Supplementary information (ESI) for

1,8-Naphthyridine-based fluorescent receptors for picric acid detection in aqueous media

Mandeep K. Chahal and Muniappan Sankar*

Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee – 247667, India

E-mail: sankafcy@iitr.ac.in

Table of Contents	
	Page No
Figure S1. ¹ H NMR spectrum of 1 in DMSO-d ₆ .	3
Figure S2. HRMS (ESI+) spectrum of 1 in CH ₃ CN.	3
Figure S3. ¹³ C NMR spectrum of 1 in DMSO-d ₆ .	4
Figure S4. ¹ H NMR spectrum of 2 in CDCl ₃ .	4
Figure S5. HRMS (ESI+) spectrum of 2 in CH ₃ CN.	5
Figure S6. ¹³ C NMR spectrum of 2 in DMSO- d_6 .	5
Figure S7. The fluorescence spectra of 1 and 2 in CH ₃ OH exhibits strong emission at 385	6
and 397 nm respectively when excited at 340 and 345 nm.	
Figure S8. Stern-Volmer plot (I ₀ /I <i>versus</i> [PA]) for sensor 1 in CH ₃ OH.	6
Figure S9. Stern-Volmer plot (I ₀ /I <i>versus</i> [PA]) for sensor 2 in CH ₃ OH.	6
Figure S10. Fluorescence quenching of 1 in methanol after addition of 4.0 equiv. of each	7
NACs.	
Figure S11. Fluorescence quenching of 2 in methanol after addition of 4.0 equiv. of each	7
NACs.	
Figure S12. Change in fluorescence spectrum of nap-OH (1) (40 µM) upon incremental	8
addition of 3-nitrophenol (NP), dinitrotoluene (DNT), nitrotoluene, (NT), dinitrobenzene	
(DNB), nitrobenzene (NB), nitromethane (NM) in methanol.	
Figure S13. Change in fluorescence spectrum of nap-Cl (2) (40 µM) upon incremental	9
addition of 3-nitrophenol (NP), dinitrotoluene (DNT), nitrotoluene (NT), dinitrobenzene	
(DNB), nitrobenzene (NB), nitromethane (NM) in methanol.	
Figure S14. (I _{max} -I)/(I _{max} -I _{min}) vs. log[PA] plots for sensor 1. The intercept at X-axis	10
shows the lowest concentrations of PA which can be detected by the sensor.	
Figure S15. $(I_{max}-I)/(I_{max}-I_{min})$ vs. log[PA] plots for sensor 2. The intercept at X-axis	10
shows the lowest concentrations of PA which can be detected by the sensor.	
Figure S16. Change in the fluorescence intensity of sensor 1 (a) upon addition of TFA (b)	11
under acidic and basic conditions (c) in the presence of excess TFA.	
Figure S17. Change in the fluorescence intensity of sensor 2 (a) upon addition of TFA (b)	11-12
under acidic and basic conditions (c) in the presence of excess TFA.	
Figure S18. Ratiometric fluorescence changes of 1 on addition of 1 equiv. of PA and 1	12
equiv. of other NACs. Blue bars indicate the blank and various NACs, and red bars	
indicate the addition of PA to the interfering NACs.	

Figure S19. Ratiometric fluorescence changes of 2 on addition of 1 equiv. of PA and 1	12
equiv. of other NACs. Blue bars indicate the blank and various NACs, and red bars	
indicate the addition of PA to the interfering NACs.	
Figure S20. Time-resolved fluorescence decays of nap-OH (1) before and after addition	13
of known concentration of PA. ($\lambda_{ex} = 340 \text{ nm}$; $\lambda_{em} = 385 \text{ nm}$).	
Figure S21. Time-resolved fluorescence decays of nap-Cl (2) before and after the addition	13
of known concentration of PA. ($\lambda_{ex} = 345 \text{ nm}$; $\lambda_{em} = 397 \text{ nm}$).	
Figure S22. UV-Vis spectral changes of nap-OH (1) while increasing [PA] in MeOH.	13
Figure S23. UV-Vis spectral changes of nap-Cl (2) while increasing [PA] in MeOH.	14
Figure S24. Fluorescence titration of sensor 2 with addition of PA at various excitation	14
wavelengths (a) 340, (b) 345, (c) 350, (d) 360 nm and no significant change in quenching	
efficiency of PA was observed.	
Figure S25. Fluorescence titration of sensor 1 with addition of PA at various excitation	15
wavelengths (a) 340, (b) 345, (c) 350, (d) 360 nm and no significant change in quenching	
efficiency of PA was observed.	
Figure S26. HOMO and LUMO energies of the frontier orbitals of the fluorophores and	15
NACs analytes in methanol.	
Figure S27. Tautomeric forms of sensor 1.	16
Figure S28 . (a) ¹ H NMR spectra (400 MHz) of the sensor 1 in presence and absence of	16
PA in DMSO- d_{6} (b) ¹ H NMR spectra of PA in DMSO- d_{6} .	
Figure S29. ¹ H NMR spectra (400 MHz) of the sensor 2 in presence and absence of <i>m</i> -	17
nitro phenol in DMSO-d ₆ .	
Figure S30. Cyclic voltammogram of nap-OH (1).	17
Figure S31. Change in fluorescence spectrum of nap-OH (1) (40 µM) upon incremental	17
addition of (a) phenol and (b) o-dichlorobenzene in 80% H ₂ O-CH ₃ OH mixture.	
Figure S32. Change in fluorescence spectrum of nap-OH (1) (40 µM) upon incremental	18
addition of (a) phenol and (b) o-dichlorobenzene in 80% H ₂ O-CH ₃ OH mixture.	
Figure S33. HOMO and LUMO orbitals of sensor 1 and 1•PA calculated by B3LYP	18
method with the $6-311+G(d,p)$ basis set.	
Figure S34. HOMO and LUMO orbitals of sensor 2 and 2•PA calculated by B3LYP	18
method with the $6-311+G(d,p)$ basis set.	
Figure S35. Changes under long UV-light of test strips after the addition of picric acid.	19

Figure S1. ¹H NMR spectrum of 1 in DMSO-d₆ at 298 K.

Figure S2. HRMS (ESI+) spectrum of 1 in CH₃CN.

Figure S3. ¹³C NMR spectrum of 1 in DMSO-d₆.

Figure S4. ¹H NMR spectrum of 2 in CDCl₃.

Figure S5. HRMS (ESI+) spectrum of 2 in CH₃CN.

Figure S6. ¹³C NMR spectrum of 2 in DMSO-d₆.

Figure S7. The fluorescence spectra of 1 and 2 in CH_3OH exhibits strong emission at 385 and 397 nm respectively, when excited at 340 and 345 nm.

Figure S8. Stern-Volmer plot (I₀/I versus [PA]) for sensor 1 in CH₃OH.

Figure S9. Stern-Volmer plot (I₀/I versus [PA]) for sensor 2 in CH₃OH.

Figure S10. Fluorescence quenching efficiency of **1** in methanol after addition of 4.0 equiv. of each NACs.

Figure S11. Fluorescence quenching efficiency of **2** in methanol after addition of 4.0 equiv. of each NACs.

Figure S12. Change in fluorescence spectrum of nap-OH (1) (40 μ M) upon incremental addition of 3-nitrophenol (NP), dinitrotoluene (DNT), nitrotoluene (NT), dinitrobenzene (DNB), nitrobenzene (NB), nitromethane (NM) in methanol at 298 K.

Figure S13. Change in fluorescence spectrum of nap-Cl (**2**) (40 μ M) upon incremental addition of 3-nitrophenol (NP), dinitrotoluene (DNT), nitrotoluene (NT), dinitrobenzene (DNB), nitrobenzene (NB), nitromethane (NM) in methanol.

Detection Limit:

The detection limit was calculated from the fluorescence quenching titration experiment. The intercept to X-axis (here log[PA]) was obtained by linear fitting of the $(I_{max}-I)/(I_{max}-I_{min})$ vs log[PA], where I_{max} , I and I_{min} are the initial fluorescence intensity, intensity at particular concentration and intensity at saturation point respectively. Detection limits were calculated by the formula, ([PA] × MW_{PA})/1000 (multiplied by 10⁶ to get the values in ppm), where MW_{PA} is the molecular weight of PA.¹⁷

Figure S14. $(I_{max}-I)/(I_{max}-I_{min})$ vs log[PA] plots for 1. The intercept at X-axis shows the lowest concentrations of PA which can be detected by the sensor.

Figure S15. $(I_{max}-I)/(I_{max}-I_{min})$ vs log[PA] plots for **2**. The intercept at x-axis shows the lowest concentrations of PA which can be detected by the sensor.

Figure S16. Change in the fluorescence intensity of sensor **1** (a) upon addition of TFA (b) under acidic and basic conditions (c) in the presence of excess TFA in 80% H₂O-CH₃OH.

Figure S17. Change in the fluorescence intensity of sensor **2** (a) upon addition of TFA (b) under acidic and basic conditions (c) in the presence of excess TFA in 80% H₂O-CH₃OH.

Figure S18. Ratiometric fluorescence changes of **1** on addition of 1 equiv. of PA and 1 equiv. of other NACs. Blue bars indicate the blank and various NACs, and red bars indicate the addition of PA to interfering NACs.

Figure S19. Ratiometric fluorescence changes of **2** on addition of 1 equiv. of PA and 1 equiv. of other NACs. Blue bars indicate the blank and various NACs, and red bars indicate the addition of PA to interfering NACs.

Figure S20. Time-resolved fluorescence decays of nap-OH (1) before and after the addition of known concentration of PA. ($\lambda_{ex} = 340$ nm; $\lambda_{em} = 385$ nm).

Figure S21. Time-resolved fluorescence decays of nap-Cl (2) before and after the addition of known concentration of PA. ($\lambda_{ex} = 345 \text{ nm}$; $\lambda_{em} = 397 \text{ nm}$).

Figure S22. UV-Vis spectral changes of nap-OH (1) while increasing [PA] in MeOH.

Figure S23. UV-Vis spectral changes of nap-Cl (2) while increasing [PA] in MeOH.

Figure S24. Fluorescence titration of sensor **2** with addition of PA at various excitation wavelengths (a) 340, (b) 345, (c) 350, (d) 360 nm and no significant changes in quenching efficiency of PA were observed.

Figure S25. Fluorescence titration of sensor **1** with addition of PA at various excitation wavelengths (a) 340, (b) 345, (c) 350, (d) 360 nm and no significant changes in quenching efficiency of PA were observed.

Figure S26. HOMO and LUMO energies of the frontier orbitals of the fluorophores and NACs analytes in methanol.

Figure 27. Tautomeric forms of sensor 1.

Figure S28. (a) ¹H NMR spectra (400 MHz) of the sensor 1 in presence and absence of PA in DMSO-d₆. (b) ¹H NMR spectra of PA in DMSO-d₆.

Figure S29. ¹H NMR spectra (400 MHz) of the sensor **2** in presence and absence of *m*-nitrophenol in DMSO- d_6 .

Figure S30. Cyclic voltammogram of nap-OH (1).

Figure S31. Change in fluorescence spectrum of nap-OH (1) (40 μ M) upon incremental addition of (a) phenol and (b) o-dichlorobenzene in 80% H₂O-CH₃OH mixture.

Figure S32. Change in fluorescence spectrum of nap-Cl (2) (40 μ M) upon incremental addition of (a) phenol and (b) o-dichlorobenzene in 80% H₂O-CH₃OH mixture.

Figure S33. HOMO and LUMO orbital of sensor **1** and **1•PA** calculated by B3LYP method with the 6-311+G(d,p) basis set.

Figure S34. HOMO and LUMO orbital of sensor **2** and **2**•**PA** calculated by B3LYP method with the 6-311+G(d,p) basis set.

Figure S35. Responses of test strips before and after the addition of picric acid under UV-light.