Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

Zeolite Socony Mobil-5 ordered mesoporous carbon as a fiber coating for solid-phase microextraction

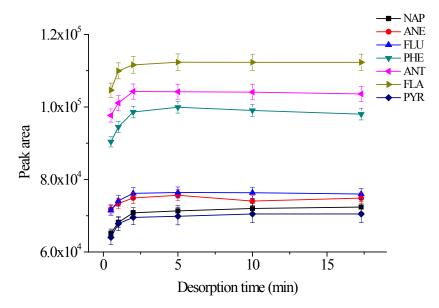
Shuaihua Zhang, Qian Yang, Zhi Li, Wei Gao, Chun Wang, and Zhi Wang*

Department of Chemistry, College of Science, Agricultural University of Hebei, Baoding 071001,
China

* Corresponding author: Zhi Wang

Phone: +86-312-7521513

Fax: +86-312-7521513


E-mail: wangzhi@hebau.edu.cn; zhiwang2013@aliyun.com

Supplement of experimental section

The preparation of silver modified stainless steel wires

First, one end (1.5 cm) of the 18 cm long stainless steel wire (o.d. 350 μ m) was dipped in nitrohydrochloric acid (HCl: HNO₃ = 3: 1, v/v) to remove the stable oxide on its surface and corrode the end to the diameter of about 180 μ m. Then, the wire was polished smoothly and subsequently ultrasonication-washed with acetone, methanol and double-distilled water each for 6 min, respectively. After being conditioned in a desiccator at room temperature for 24 h, the wire was dipped into a reaction solution containing 0.1 mol L⁻¹ [Ag(NH₃)₂]⁺ and 0.5 mol L⁻¹ glucose for about 2.5 h to form a microstructured silver layer by silver mirror reaction. Then, the wire was taken out and rinsed with distilled water. After being dried at room temperature, a firm and porous coating of silver was formed on the surface of the stainless steel wire.

Supplement of Figure

Fig. S1 Effect of desorption time. *Conditions*: analyte concentration, 100 ng L⁻¹; extraction temperature, 60 °C; extraction time, 30 min; stirring rate, 600 rpm; KCl concentration, 20% (w/v); desorption temperature, 250 °C.

Supplement of Table

Table S1 Comparison of sensitivity of different methods by various sorbents for the SPME of PAHs.

Extraction/ determination method	Extracting phase	Samples	Linear range	LOD	RSD (%)
SPME-GC/ MS ⁴¹	PDMS	Water	0.1- 50.0 ng mL ⁻¹	0.01- 0.7 ng mL ⁻¹	3.7- 27.0
Cold-fiber SPME-GC/ FID ⁴²	PDMS	Soil	1200- 40000 ng g ⁻¹	200- 2300 ng g ⁻¹	4- 19
SPME-GC/ MS ⁴³	PDMS/DVB	Coast sediments	1.2- 500 ng g ⁻¹	0.4- 15 ng g ⁻¹	3.3-9.6
SPME-GC/ FID ⁴⁰	Graphene	Water	0.05-200 ng mL ⁻¹	0.004- 0.05 ng mL ⁻¹	2.8- 9.4
SPME-GC/ FID ⁴⁴	PEDOT/GOa	Water	0.4- 600 ng mL ⁻¹	0.05- 0.13 ng mL ⁻¹	4.1-6.8
SPME-GC/ FID ⁴⁵	MWCNTs ^b	smoked rice	0.5- 800 ng g ⁻¹	0.04- 0.15 ng g ⁻¹	1.83- 5.17
SPME-GC/ FID ^c	OMC-ZSM-5	Soil	1.7- 100.0 ng g ⁻¹	0.5- 1.6 ng g ⁻¹	4.6- 7.9

^a PEDOT/GO: poly(3,4-ethylenedioxythiophene)/ graphene oxide.

References

- 40. J. Fan, Z. Dong, M. Qi, R. Fu and L. Qu, J. Chromatogr. A, 2013, 1320, 27-32.
- 41. E. Psillakis, A. Ntelekos, D. Mantzavinos, E. Nikolopoulos and N. Kalogerakis, *J. Environ. Monitor.*, 2003, **5**, 135-140.
- 42. E. Martendal and E. Carasek, *J Chromatogr A*, 2011, **1218**, 1707-1714.
- 43. V. Fernandez-Gonzalez, E. Concha-Grana, S. Muniategui-Lorenzo, P. Lopez-Mahia and D. Prada-Rodriguez, *J. Chromatogr. A*, 2008, **1196-1197**, 65-72.
- 44. M. H. Banitaba, S. S. Hosseiny Davarani and S. Kazemi Movahed, *J. Chromatogr. A*, 2014, **1325**, 23-30.
- 45. A. A. Matin, P. Biparva and M. Gheshlaghi, J. Chromatogr. A, 2014, 1374, 50-57.

^b MWCNTs: Multiwalled carbon nanotubes.

^c present work.