Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2015

Supporting information

Development of the validated LCMS bioanalysis of Trastuzumab in human plasma using selective detection method for complementarity-determining regions of monoclonal antibody: nano-surface and molecular-orientation limited (nSMOL) proteolysis

Noriko Iwamoto1, Naoe Yamane2, Yukari Umino1, Akinobu Hamada3, and Takashi Shimada1*

1. Life Science Research Center, SHIMADZU Corporation, Kanda-Nishiki-cho, Chiyoda-ku, Tokyo 101-8448, Japan

2. JCL Bioassay Corporation, Miyahara, Yodogawa-ku, Osaka 532-0003 Japan

3. Division of Clinical Pharmacology and Translational Research, National Cancer Center, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan

*Corresponding author Takashi Shimada, Ph.D. R&D Manager E-mail: t-shima@shimadzu.co.jp Life Science Research Center, SHIMADZU Corporation 1-3 Kanda-Nishiki-cho, Chiyoda-ku, Tokyo 101-8448, Japan TEL: +81-3-3547-7635 / FAX: +81-3-3547-7636

Signature peptide prediction

The candidates of signature peptides for Trastuzumab quantitation were predicted by the ClustalW multiple alignment of 4 mAbs (Trastuzumab, Mogamulizumab, Bevacizumab, and Nivolumab) amino acid sequences. Consideration of the frequency of amino acid substitution, tryptic peptides with cyeteine or methionine, peptide amino acid number, the position of conserved cysteine residue for disulfide bonding, and the insertion or deletion of amino acid, we have selected 4 peptides of the CDR containing region for Trastuzumab quantitation. The optimized MRM transition are shown in Table S1.

Selected		Optimal MF				
Selected	Region	Transition mass filter	Q1	Collision	Q3	Role
peptide		[m/z]	[V]	[V]	[V]	
	H-chain of	363.9 → 299.2 (y4 ⁺⁺)	-15	-17	-24	Quantitation
DTYIHWVR		363.9 → 460.3 (y3 ⁺)	-27	-17	-22	Structure
	CDRT	363.9 → 597.3 (y4 ⁺)	-14	-16	-20	Structure
GLEWVAR	H-chain of CDR2	415.7 → 660.3 (y5 ⁺)	-16	-15	-34	Quantitation
		415.7 → 531.3 (y4 ⁺)	-16	-16	-40	Structure
		415.7→345.2 (y3 ⁺)	-16	-20	-24	Structure
	H-chain of CDR2	485.15 → 721.3 (y7 ⁺)	-19	-18	-38	Quantitation
FTISADTSK		485.15 → 608.3 (y6 ⁺)	-19	-20	-32	Structure
		485.15→521.2 (y5 ⁺)	-19	-21	-26	Structure
IYPTNGYTR	H-chain of CDR2	542.8→404.7 (y7 ⁺⁺)	-20	-18	-30	Quantitation
		542.8→808.4 (y7 ⁺)	-20	-18	-28	Structure
		542.8 → 610.3 (y5 ⁺)	-20	-25	-22	Structure

Table S1. MRM conditions of predicted signature peptides.

Interference confirmation of Trastuzumab peptide in human plasma

The predicted 4 signature peptides were analyzed by 2-fold serial dilution from 3.13 to 100 μ g/ml in plasma for the interference confirmation of Trastuzumab peptides from human plasma matrix. Each calibration curve is shown in Figure S2. The calibration curve of a) DTYIHWVR (m/z 363.9 \rightarrow 299.2), and c) FTISADTSK (m/z 485.15 \rightarrow 721.3) have fit to linear regression, however low concentration range of Trastuzumab was interfered by plasma matrix. The curve of b) GLEWVAR (m/z 415.7 \rightarrow 660.3) could not fit on linear regression. Peptide of d) IYPTNGYTR (m/z 542.8 \rightarrow 404.7) was good correlation with the Trastuzumab concentration.

Figure S1. Calibration curves of Trastuzumab in plasma by MRM quantitation of the 4 signature peptides of a) DTYIHWVR (m/z $363.9 \rightarrow 299.2$), b) GLEWVAR (m/z $415.7 \rightarrow 660.3$), c) FTISADTSK (m/z $485.15 \rightarrow 721.3$), and d) IYPTNGYTR (m/z $542.8 \rightarrow 404.7$). Each range of calibration curve was shown from the low concentration level on linear regression fit within $100 \pm 15\%$ accuracy to 100μ g/ml. In the each table, back-calculated concentration and accuracy% were described.

Figure S1

a) DTYIHWVR

b) GLEWVAR

Summary of the bioanalytical LCMS validation of Trastuzumab in plama by nSMOL protocol

Analyte	Corresponding concentration (µg/ml)	Blank matrix No.	P ₁₄ R-normalized MF	Mean	SD	CV (%)
		M1	0.821		0.074	8.7
		M2	0.891	0.845		
	2.93	M3	0.800			
Trachurumah		F1	0.882			
		F2	0.735			
		F3	0.941			
Trastuzumab	200	M1	0.559		0.022	4.0
		M2	0.570	0.547		
		M3	0.564			
		F1	0.544			
		F2	0.527			
		F3	0.515			

Table S2. Matrix effect

Table S3. Carry-over

Compound		Peak	Dook oroo roto		
	Run		Carry over	(%)	
		LLOQ	sample		
Trastuzumab	1	838	ND	NC	
	2	841	ND	NC	
	3	901	ND	NC	
P ₁₄ R	1	1593763	730	0.05	

ND: Not detected

NC: Not calculated

Nominal concentration	Back-ca	Back-calculated concentration			Accuracy (%)
(ug/ml)	1	(μg/iiii) 2	3	1	2	3
0.977	1.02	0.932	1.03	104.4	95.1	105.3
1.95	1.75	2.11	1.74	89.5	108.2	89.2
3.91	4.01	4.48	3.93	102.7	114.5	100.5
7.81	8.67	8.36	8.22	110.9	107.0	105.2
15.6	16.8	15.3	16.5	107.2	97.9	105.3
31.3	31.8	33.8	34.5	101.8	108.2	110.5
62.5	61.1	60.5	60.0	97.7	96.8	96.0
125	126	114	122	100.6	90.8	97.5
250	232	231	245	93.0	92.4	98.0

Table S4. Calibration curve

Table S5. Precision and accuracy

Dun	Nominal	Concentration (µg/ml)				
Ruli	concentration	0.977	2.93	23.4	200	
		0.933	2.84	24.2	209	
		0.919	2.64	24.2	203	
	Observed	0.955	3.04	24.3	230	
		0.923	2.81	25.7	229	
1		0.967	2.48	24.4	226	
	Mean	0.939	2.76	24.6	219	
	SD	0.021	0.21	0.6	13	
	CV (%)	2.2	7.6	2.6	5.7	
	Accuracy (%)	96.2	94.2	104.8	109.7	
		0.759	2.44	23.7	198	
		0.735	2.38	25.5	204	
	Observed	0.902	2.42	24.9	206	
		0.921	2.43	23.5	225	
2		0.952	2.22	25.0	209	
	Mean	0.854	2.38	24.5	208	
	SD	0.099	0.09	0.9	10	
	CV (%)	11.7	3.8	3.6	4.9	
	Accuracy (%)	87.4	81.2	104.6	104.2	
		0.747	2.63	23.1	205	
		0.960	2.52	25.2	224	
	Observed	0.743	2.56	23.3	200	
		0.970	2.53	27.1	198	
3		0.917	2.79	25.6	205	
	Mean	0.867	2.61	24.9	206	
	SD	0.114	0.11	1.7	10	
	CV (%)	13.1	4.3	6.7	5.0	
	Accuracy (%)	88.8	89.0	106.1	103.2	
	Mean (N=15)	0.887	2.58	24.6	211	
	SD (N=15)	0.090	0.21	1.1	12	
	CV (%)	10.2	8.2	4.4	5.6	
	Accuracy (%)	90.8	88.1	105.2	105.7	

Table S6. Dilution integrity

Nominal concentration (µg/ml)	Dilution factor	Observed* (μg/ml)	Mean (µg/ml)	SD (µg/ml)	CV (%)	Accuracy (%)
300	10	308	299	28	9.5	99.7
		334				
		309				
		285				
		259				

*Values of the QC samples were multiplied by the dilution factor

	Concentrations of Trastuzumab in human plasma						
	(μg/ml)						
Parameters for stability studies	2.	93	200				
	Mean	Jean Accuracy		Accuracy			
	(µg/ml)	(%)	(µg/ml)	(%)			
Stability in plasma during freeze (-20 °C) and tha	w cycles					
Cycle 5	2.87	98.1	199	99.7			
Stability in plasma during freeze (-80 °C) and thaw cycles							
Cycle 5	2.97	110.3					
Short-term stability in plasma for 4	4 hours at room	n temperature					
	2.68	91.6	192	96.2			
Long-term stability in plasma for 1	5 days at -20 °	С					
	3.03	103.5	203	101.3			
Long-term stability in plasma for 15 days at -80 °C							
	2.71	92.5	207	103.3			
Processed sample stability in auto	Processed sample stability in autosampler set at 4 °C						
For 24 hours	2.78 95.0 203 10						
For 48 hours	For 48 hours 2.67 91.2 211 105						

Table S7. Confirmation of QC sample for stability