## Supplementary information

Colorimetric detection of penicillin antibiotic residues in pork using hybrid magnetic nanoparticles and penicillin classselective, antibody-functionalized platinum nanoparticles

Donghoon Kwon<sup>a</sup>, Wonjae Lee<sup>a</sup>, Wuseok Kim<sup>a</sup>, Hojin Yoo<sup>a</sup>, Ho-Chul Shin<sup>b</sup> and Sangmin

Jeon<sup>\*, a</sup>

<sup>a</sup>Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea <sup>b</sup>Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine,

Konkuk University, Seoul 143-701

\*E-mail to corresponding author: jeons@postech.ac.kr.



Figure S1. Magnetization curve of magnetic nanoparticle clusters (MNCs)



**Figure S2.** (A) Optical images of TMB oxidation and (B) corresponding absorbance spectra as a function of Enrofloxacin, (C) absorbance peak value at 370 nm.



**Figure S3.** Selectivity test of anti-quinolone antibody; (A) optical images of TMB oxidation and (B) absorbance peak value at 370 nm. A: Enrofloxacin, B: Norfloxacin, C: Ciprofloxacin, D: Oxolinic acid, E: Nalidixic acid, F: Penicillin G, G: Sulfamethazine, H: Maduramicin, and I: Bacitracin



Figure S4. Quinolone class antibiotics and their common structure